Vitamin D and its pathway genes in myopia: systematic review and meta-analysis
British Journal of Ophthalmology doi: 10.1136/bjophthalmol-2018-312159
Shu Min Tang1, Tiffany Lau1, Shi Song Rong1,2, Seyhan Yazar3, Li Jia Chen1, David A Mackey3, Robyn M Lucas4, Chi Pui Pang1, Jason C Yam1
Vision category starts with the following
see also Myopia Tears often have 25 % higher levels of vitamin D than does blood
Search vitaminDWiki for "macular degeneration" OR AMD 337 items as of March 2019
Search Vitamin D Life for CATARACT 493 items as of April 2019
Most visited 10 pages in (category) Vision
Items in both categories Vision and Meta-analysis are listed here:
- Vitamin D and Age-Related Macular Degeneration (and 2 AMD meta-analyses) – Oct 2017
- Diabetic Retinopathy twice as likely if a T2 Diabetic has low level of vitamin D – meta-analysis March 2017
- Diabetic Retinopathy 2 X more likely if poor Vitamin D Receptor – meta-analysis Nov 2016
- Diabetic Retinopathy 27 percent more likely if low vitamin D – meta-analysis May 2016
- Late stage AMD 2.2 more likely if low vitamin D – meta-analysis April 2016
71 Vision and Vitamin D itemsPDF is available free at Sci-Hub 10.1136/bjophthalmol-2018-312159
Objective To conduct a systematic review and meta-analysis of the association of blood vitamin D (25-hydroxyvitamin D, 25(OH)D) concentration and vitamin D pathway genes with myopia.
Methods We searched the MEDLINE and EMBASE databases for studies published up to 29 January 2018. Cross-sectional or cohort studies which evaluated the blood 25(OH)D concentration, blood 25(OH)D3 concentration or vitamin D pathway genes, in relation to risk of myopia or refractive errors were included. Standard mean difference (SMD) of blood 25(OH)D concentrations between the myopia and non-myopia groups was calculated. The associations of blood 25(OH)D concentrations and polymorphisms in vitamin D pathway genes with myopia using summary ORs were evaluated.
Results We summarised seven studies involving 25 008 individuals in the meta-analysis. The myopia group had lower 25(OH)D concentration than the non-myopia group (SMD=−0.27 nmol/L, p=0.001). In the full analysis, the risk of myopia was inversely associated with blood 25(OH)D concentration after adjusting for sunlight exposure or time spent outdoors (adjusted odds ratio (AOR)=0.92 per 10 nmol/L, p<0.0001).
However, the association was not statistically significant for the <18 years subgroup (AOR=0.91 per 10 nmol/L, p=0.13) and was significant only for 25(OH)D3 (likely to be mainly sunlight derived), but not total 25(OH)D (AOR=0.93 per 10 nmol/L, p=0.00007; AOR=0.91 per 10 nmol/L, p=0.15).
We analysed four single nucleotide polymorphisms in the VDR gene from two studies; there was no significant association with myopia.
Conclusions Lower 25(OH)D is associated with increased risk of myopia; the lack of a genetic association suggests that 25(OH)D level may be acting as a proxy for time outdoors.
Myopia in adults is 8 percent more likely for every 4 ng less Vitamin D – meta-analysis July 2018
436 visitors, last modified 23 Jul, 2018, URL:
Printer Friendly PDF this page! Follow this page for updates
PDF is available free at Sci-Hub 10.1136/bjophthalmol-2018-312159
Objective To conduct a systematic review and meta-analysis of the association of blood vitamin D (25-hydroxyvitamin D, 25(OH)D) concentration and vitamin D pathway genes with myopia.
Methods We searched the MEDLINE and EMBASE databases for studies published up to 29 January 2018. Cross-sectional or cohort studies which evaluated the blood 25(OH)D concentration, blood 25(OH)D3 concentration or vitamin D pathway genes, in relation to risk of myopia or refractive errors were included. Standard mean difference (SMD) of blood 25(OH)D concentrations between the myopia and non-myopia groups was calculated. The associations of blood 25(OH)D concentrations and polymorphisms in vitamin D pathway genes with myopia using summary ORs were evaluated.
Results We summarised seven studies involving 25 008 individuals in the meta-analysis. The myopia group had lower 25(OH)D concentration than the non-myopia group (SMD=−0.27 nmol/L, p=0.001). In the full analysis, the risk of myopia was inversely associated with blood 25(OH)D concentration after adjusting for sunlight exposure or time spent outdoors (adjusted odds ratio (AOR)=0.92 per 10 nmol/L, p<0.0001).
However, the association was not statistically significant for the <18 years subgroup (AOR=0.91 per 10 nmol/L, p=0.13) and was significant only for 25(OH)D3 (likely to be mainly sunlight derived), but not total 25(OH)D (AOR=0.93 per 10 nmol/L, p=0.00007; AOR=0.91 per 10 nmol/L, p=0.15).
We analysed four single nucleotide polymorphisms in the VDR gene from two studies; there was no significant association with myopia.
Conclusions Lower 25(OH)D is associated with increased risk of myopia; the lack of a genetic association suggests that 25(OH)D level may be acting as a proxy for time outdoors.
Myopia in adults is 8 percent more likely for every 4 ng less Vitamin D – meta-analysis July 2018
436 visitors, last modified 23 Jul, 2018, URL: |