The role of omega-3 in the prevention and treatment of sarcopenia
Aging Clinical and Experimental Research,
Sarcopenia (muscle loss) and Vitamin D - many studies
Vitamin D and Muscles
Items in both categories Omega-3 and Sports are listed here:
- Less muscle loss associated with eating more fish (Omega-3, Vitamin D, Magnesium, etc) – Jan 2020
- Omega-3 helps muscles – Aug 2019
- Muscle loss (sarcopenia) may be both prevented and treated by Omega-3 – Feb 2019
- No NCAA player had a healthy Omega-3 index – Jan 2019
- Muscle fatigue 4X less likely in rugby players getting Omega-3 and protein – July 2018
- 2X less muscle soreness after exercise if Omega-3 index higher than 4 – RCT 2014
- Olympic Committee consensus on Vitamin D, Omega-3, Zinc, etc– May 2018
- During NFL season – Omega-3 down by 2.5 points while Vitamin D up by 9 ng – March 2018
- Omega-3 helps muscles and reduces inflammation, lipids, and insulin – Nov 2015
- Mild Traumatic Brain Injury prevented with Omega-3, Resveratrol, etc (in rats) – Oct 2017
- Large single-dose of Omega-3 reduced expected muscle damage – Feb 2017
- Capillary blood flow increased with Omega-3 by increasing deformability of blood cells – July 2015
- Football Brain injuries prevented by Omega-3 – RCT Jan 2016
- Senior muscles increased somewhat with Omega-3 – RCT July 2015
- Traumatic brain injury treated by Vitamin D Progesterone Omega-3 and glutamine – May 2013
 Download the PDF from Vitamin D Life
Sarcopenia is a geriatric syndrome with increasing importance due to the aging of the population. It is known to impose a major burden in terms of morbidity, mortality and socio-economic costs. Therefore, adequate preventive and treatment strategies are required. Progressive resistance training and protein supplementation are currently recommended for the prevention and treatment of sarcopenia. Omega-3 polyunsaturated fatty acids (PUFAs) might be an alternative therapeutic agent for sarcopenia due to their anti-inflammatory properties, which target the ‘inflammaging’, the age-related chronic low-grade inflammation which is assumed to contribute to the development of sarcopenia. In addition, omega-3 PUFAs may also have an anabolic effect on muscle through activation of the mTOR signaling and reduction of insulin resistance. This narrative review provides an overview of the current knowledge about omega-3 PUFAs and their role in the prevention and treatment of sarcopenia. We conclude that there is growing evidence for a beneficial effect of omega-3 PUFAs supplementation in sarcopenic older persons, which may add to the effect of exercise and/or protein supplementation. However, the exact dosage, frequency and use (alone or combined) in the treatment and prevention of sarcopenia still need further exploration.