Autism is associated with low vitamin D – meta-analysis
Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: a systematic review and meta-analysis
European Child & Adolescent Psychiatry, pp 1-10, online: 29 October 2015 doi: 10.1080/1028415X.2015.1123847
Tiantian Wang, Ling Shan, Lin Du, Junyan Feng, Zhida Xu, Wouter G. Staal, Feiyong Jia [email protected]
Vitamin D may play an important role in the etiology of Autism Spectrum Disorders (ASD).
Vitamin D is regarded as a neuroactive steroid affecting brain development and function.
It plays an essential role in myelination, which is important for connectivity in the brain.
Studies have shown that
decreased vitamin D levels in patients,
decreased maternal vitamin D levels during pregnancy, and
decreased exposure to solar UVB
might increase the risk for ASD.
In addition, autism symptoms and global functioning may improve after vitamin D supplementation .
Here, we sought to aggregate information from previous publications on vitamin D levels and ASD, in order to achieve a higher statistical power and thereby to determine the validity of vitamin D deficiency as a risk factor for ASD. For this meta-analysis, 11 studies met the inclusion and exclusion criteria, accounting for a total of 870 ASD patients and 782 healthy controls.
Levels of serum 25(OH) D in participants with ASD were significantly lower than controls, suggesting that lower vitamin D level might be a risk factor for ASD.
Summary table from the PDF
Note that all of the trials which had controls with inadequate level of vitamin D had poor results
Imagine how much better the results would have been if the trials with inadequate vitamin D were ignored

Publisher wants $40 for the PDF
References
1.American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. 5th edn. American Psychiatric Association, Washington DC.
2.Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–250
3.Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcín C, Montiel-Nava C, Patel V, Paula CS, Wang C, Yasamy MT, Fombonne E (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5:160–179PubMed CentralCrossRefPubMed
4.Atladottir HO, Gyllenberg D, Langridge A et al (2015) The increasing prevalence of reported diagnoses of childhood psychiatric disorders: a descriptive multinational comparison. Eur Child Adolesc Psychiatry 24:173–183CrossRefPubMed
5.Heil KM, Schaaf CP (2013) The genetics of autism spectrum disorders—a guide for clinicians. Curr Psychiatry Rep 15:334CrossRefPubMed
6.Smalley SL, Asarnow RF, Spence MA (1988) Autism and genetics. A decade of research. Arch Gen Psychiatry 45:953–961CrossRefPubMed
7.Schaefer GB, Mendelsohn NJ (2013) Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med Off J Am Coll Med Genet 15:399–407
8.Mendelsohn NJ, Schaefer GB (2008) Genetic evaluation of autism. Semin Pediatr Neurol 15:27–31CrossRefPubMed
9.Posthuma D, Polderman TJ (2013) What have we learned from recent twin studies about the etiology of neurodevelopmental disorders? Curr Opin Neurol 26:111–121CrossRefPubMed
10.Iossifov I, O’Roak BJ, Sanders SJ et al (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216–221PubMed CentralCrossRefPubMed
11.De Rubeis S, He X, Goldberg AP et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–215PubMed CentralCrossRefPubMed
12.Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of autism. Jama 311:1770–1777PubMed CentralCrossRefPubMed
13.Kolevzon A, Gross R, Reichenberg A (2007) Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med 161:326–333CrossRefPubMed
14.Gardener H, Spiegelman D, Buka SL (2009) Prenatal risk factors for autism: comprehensive meta-analysis. Br J Psychiatry J Ment Sci 195:7–14CrossRef
15.Munger KL, Levin LI, Massa J, Horst R, Orban T, Ascherio A (2013) Preclinical serum 25-hydroxyvitamin D levels and risk of type 1 diabetes in a cohort of US military personnel. Am J Epidemiol 177:411–419PubMed CentralCrossRefPubMed
16.Ronald A, Hoekstra RA (2011) Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 156b:255–274CrossRef
17.Freitag CM, Staal W, Klauck SM, Duketis E, Waltes R (2010) Genetics of autistic disorders: review and clinical implications. Eur Child Adolesc Psychiatry 19:169–178PubMed CentralCrossRefPubMed
18.Uher R (2014) Gene-environment interactions in severe mental illness. Frontiers in psychiatry 5:48PubMed CentralCrossRefPubMed
19.Neggers YH (2014) Increasing prevalence, changes in diagnostic criteria, and nutritional risk factors for autism spectrum disorders. ISRN Nutr 2014:514026PubMed CentralCrossRefPubMed
20.Bakare MO, Munir KM (2011) Autism spectrum disorders (ASD) in Africa: a perspective. Afr J Psychiatry 14:208–210
21.DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC (2013) Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 39:458–484CrossRefPubMed
22.Cannell JJ (2008) Autism and vitamin D. Med Hypotheses 70:750–759CrossRefPubMed
23.Grant WB, Soles CM (2009) Epidemiologic evidence supporting the role of maternal vitamin D deficiency as a risk factor for the development of infantile autism. Dermato-endocrinology 1:223–228PubMed CentralCrossRefPubMed
24.Cannell JJ, Grant WB (2013) What is the role of vitamin D in autism? Dermato-endocrinology 5:199–204PubMed CentralCrossRefPubMed
25.Kocovska E, Fernell E, Billstedt E, Minnis H, Gillberg C (2012) Vitamin D and autism: clinical review. Res Dev Disabil 33:1541–1550CrossRefPubMed
26.Becker KG (2011) Autism, immune dysfunction and Vitamin D. Acta psychiatrica Scandinavica 124:74–75CrossRefPubMed
27.Wang TT, Du L, Shan L, Jia FY (2014) Research advances in immunological dysfunction in children with autism spectrum disorders. Chinese journal of contemporary pediatrics (Zhongguo dang dai er ke za zhi) 16:1289–1293
28.Noriega DB, Savelkoul HF (2014) Immune dysregulation in autism spectrum disorder. Eur J Pediatr 173:33–43CrossRefPubMed
29.Meguid NA, Hashish AF, Anwar M, Sidhom G (2010) Reduced serum levels of 25-hydroxy and 1,25-dihydroxy vitamin D in Egyptian children with autism. J Altern Complement Med (New York, NY) 16:641–645CrossRef
30.Humble MB, Gustafsson S, Bejerot S (2010) Low serum levels of 25-hydroxyvitamin D (25-OHD) among psychiatric out-patients in Sweden: relations with season, age, ethnic origin and psychiatric diagnosis. J Steroid Biochem Mol Biol 121:467–470CrossRefPubMed
31.Mostafa GA, Al-Ayadhi LY (2012) Reduced serum concentrations of 25-hydroxy vitamin D in children with autism: relation to autoimmunity. J Neuroinflammation 9:201PubMed CentralCrossRefPubMed
32.Tostes MH, Polonini HC, Gattaz WF (2012) Low serum levels of 25-hydroxyvitamin D (25-OHD) in children with autism. Trends in Psychiatry and Psychotherapy 3:161–163CrossRef
33.Neumeyer AM, Gates A, Ferrone C, Lee H, Misra M (2013) Bone density in peripubertal boys with autism spectrum disorders. J Autism Dev Disord 43:1623–1629PubMed CentralCrossRefPubMed
34.Gong ZL, Luo CM, Wang L et al (2014) Serum 25-hydroxyvitamin D levels in Chinese children with autism spectrum disorders. NeuroReport 25:23–27CrossRefPubMed
35.Kocovska E, Andorsdottir G, Weihe P et al (2014) Vitamin d in the general population of young adults with autism in the faroe islands. J Autism Dev Disord 44:2996–3005PubMed CentralCrossRefPubMed
36.Bener A, Khattab AO, Al-Dabbagh MM (2014) Is high prevalence of Vitamin D deficiency evidence for autism disorder?: In a highly endogamous population. J Pediatr Neurosci 9:227–233PubMed CentralCrossRefPubMed
37.Du L, Shan L, Wang B, Feng JY, Xu ZD, Jia FY (2015) Serum levels of 25-hydroxyvitamin D in children with autism spectrum disorders. Chinese journal of contemporary pediatrics (Zhongguo dang dai er ke za zhi) 17:68–71
38.Saad K, Abdel-Rahman AA, Elserogy YM et al. (2015) Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutritional neuroscience. (PMID:25876214)
39.Fernell E, Bejerot S, Westerlund J et al (2015) Autism spectrum disorder and low vitamin D at birth: a sibling control study. Mol Autism 6:3PubMed CentralCrossRefPubMed
40.Molloy CA, Kalkwarf HJ, Manning-Courtney P, Mills JL, Hediger ML (2010) Plasma 25(OH)D concentration in children with autism spectrum disorder. Dev Med Child Neurol 52:969–971PubMed CentralCrossRefPubMed
41.Adams JB, Audhya T, McDonough-Means S et al (2011) Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab 8:32CrossRef
42.Uğur Ç, Gürkan CK (2014) Serum vitamin D and folate levels in children with autism spectrum disorders. Res Autism Spectr Disord 8:1641–1647CrossRef
43.Fernell E, Barnevik-Olsson M, Bagenholm G, Gillberg C, Gustafsson S, Saaf M (2010) Serum levels of 25-hydroxyvitamin D in mothers of Swedish and of Somali origin who have children with and without autism. Acta Paediatrica (Oslo, Norway: 1992) 99:743–747
44.Vadeyar S, Shetye S, Somani S, Shah P (2014) Maternal vitamin D deficiency correlation with neonatal vitamin D deficiency. BJOG Int J Obstet Gynaecol 121:165–166
45.Whitehouse AJ, Holt BJ, Serralha M, Holt PG, Hart PH, Kusel MM (2013) Maternal vitamin D levels and the autism phenotype among offspring. J Autism Dev Disord 43:1495–1504CrossRefPubMed
46.Grant WB, Cannell JJ (2013) Autism prevalence in the United States with respect to solar UV-B doses: an ecological study. Dermato-endocrinology 5:159–164PubMed CentralCrossRefPubMed
47.Dealberto MJ (2011) Prevalence of autism according to maternal immigrant status and ethnic origin. Acta Psychiatr Scand 123:339–348CrossRefPubMed
48.Hayashi E (2001) Seasonal changes in sleep and behavioral problems in a pubescent case with autism. Psychiatry Clin Neurosci 55:223–224CrossRefPubMed
49.Adams JB, Audhya T, McDonough-Means S et al (2011) Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr 11:111PubMed CentralCrossRefPubMed
50.Cannell JJ (2013) Autism, will vitamin D treat core symptoms? Med Hypotheses 81(2):195–198CrossRefPubMed
51.Jia F, Wang B, Shan L, Xu Z, Staal WG, Du L (2015) Core symptoms of autism improved after vitamin d supplementation. Pediatrics 135:e196–e198CrossRefPubMed
52.Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605CrossRefPubMed
53.Duan XY, Jia FY, Jiang HY (2013) Relationship between vitamin D and autism spectrum disorder. Chinese journal of contemporary pediatrics (Zhongguo dang dai er ke za zhi) 15:698–702
54.Almeras L, Eyles D, Benech P et al (2007) Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics 7:769–780CrossRefPubMed
55.Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ (2005) Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 29:21–30CrossRefPubMed
56.Eyles DW, Burne TH, McGrath JJ (2013) Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 34:47–64CrossRefPubMed
57.Harms LR, Burne TH, Eyles DW, McGrath JJ (2011) Vitamin D and the brain. Best Pract Res Clin Endocrinol Metab 25:657–669CrossRefPubMed
58.Al-Daghri NM, Al-Attas OS, Alokail MS et al (2014) Lower vitamin D status is more common among Saudi adults with diabetes mellitus type 1 than in non-diabetics. BMC Public Health 14:153PubMed CentralCrossRefPubMed
59.Brance ML, Brun LR, Lioi S, Sanchez A, Abdala M, Oliveri B (2015) Vitamin D levels and bone mass in rheumatoid arthritis. Rheumatol Int 35:499–505CrossRefPubMed
60.Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25:40–45PubMed CentralCrossRefPubMed
61.Jones AP, Tulic MK, Rueter K, Prescott SL (2012) Vitamin D and allergic disease: sunlight at the end of the tunnel? Nutrients 4:13–28PubMed CentralCrossRefPubMed
62.Guillot X, Semerano L, Saidenberg-Kermanac’h N, Falgarone G, Boissier MC (2010) Vitamin D and inflammation. Jt Bone Spine Rev du Rhum 77:552–557CrossRef
63.Mao L, Ji F, Liu Y, Zhang W, Ma X (2014) Calcitriol plays a protective role in diabetic nephropathy through anti-inflammatory effects. Int J Clin Exp Med 7:5437–5444PubMed CentralPubMed
64.Neve A, Corrado A, Cantatore FP (2014) Immunomodulatory effects of vitamin D in peripheral blood monocyte-derived macrophages from patients with rheumatoid arthritis. Clin Exp Med 14:275–283CrossRefPubMed
65.Munoz LE, Schiller M, Zhao Y, Voll RE, Schett G, Herrmann M (2012) Do low vitamin D levels cause problems of waste removal in patients with SLE? Rheumatology (Oxford, England) 51:585–587CrossRef
66.Hayes CE, Nashold FE, Spach KM, Pedersen LB (2003) The immunological functions of the vitamin D endocrine system. Cell Mol Biol (Noisy-le-Grand, France) 49:277–300
67.Masi A, Quintana DS (2015) Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry 20:440–446CrossRefPubMed
68.Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J (2011) Altered T cell responses in children with autism. Brain Behav Immun 25:840–849CrossRefPubMed
69.Sweeten TL, Bowyer SL, Posey DJ, Halberstadt GM, McDougle CJ (2003) Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 112:e420CrossRefPubMed
70.Croen LA, Grether JK, Yoshida CK, Odouli R, Van de Water J (2005) Maternal autoimmune diseases, asthma and allergies, and childhood autism spectrum disorders: a case-control study. Arch Pediatr Adolesc Med 159:151–157CrossRefPubMed
71.Mostafa GA, Kitchener N (2009) Serum anti-nuclear antibodies as a marker of autoimmunity in Egyptian autistic children. Pediatr Neurol 40:107–112CrossRefPubMed
72.Mostafa GA, Al-Ayadhi LY (2011) Increased serum levels of anti-ganglioside M1 auto-antibodies in autistic children: relation to the disease severity. J Neuroinflammation 8:39PubMed CentralCrossRefPubMed
73.Al-ayadhi LY, Mostafa GA (2011) Increased serum osteopontin levels in autistic children: relation to the disease severity. Brain Behav Immun 25:1393–1398CrossRefPubMed
74.Mostafa GA, Al-Ayadhi LY (2011) A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. J Neuroinflammation 8:71PubMed CentralCrossRefPubMed
75.Al-A LY, Mostafa GA (2014) Serum antinucleosome-specific antibody as a marker of autoimmunity in children with autism. J Neuroinflammation 11:69CrossRef
76.Rossignol DA, Frye RE (2012) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17:389–401PubMed CentralCrossRefPubMed
77.Hegazy HG, Ali EH, Elgoly AH (2015) Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: evidence of parallels between butyl paraben intoxication and the valproic acid brain physiopathology in autism rat model. Cytokine 71:173–180CrossRefPubMed
78.Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671CrossRefPubMed
79.Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D (2002) New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab TEM 13:100–105CrossRefPubMed
80.Garcion E, Thanh XD, Bled F et al (1996) 1,25-Dihydroxyvitamin D3 regulates gamma 1 transpeptidase activity in rat brain. Neurosci Lett 216:183–186CrossRefPubMed
81.Halicka HD, Zhao H, Li J, Traganos F, Studzinski GP, Darzynkiewicz Z (2012) Attenuation of constitutive DNA damage signaling by 1,25-dihydroxyvitamin D3. Aging 4:270–278PubMed CentralPubMed
82.Patrick RP, Ames BN (2014) Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J Off Publ Fed Am Soc Exp Biol 28:2398–2413
83.Crockett MJ, Clark L, Tabibnia G, Lieberman MD, Robbins TW (2008) Serotonin modulates behavioral reactions to unfairness. Science (New York, NY) 320:1739CrossRef
84.Chugani DC, Muzik O, Behen M et al (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45:287–295CrossRefPubMed
85.McBride PA, Anderson GM, Hertzig ME et al (1989) Serotonergic responsivity in male young adults with autistic disorder. Results of a pilot study. Arch Gen Psychiatry 46:213–221CrossRefPubMed
86.Prufer KJG (1997) 1.25-Dihydroxyvitamin D3 receptor is partly colocalized with oxytocin immunoreac-tivity in neurons of the male rat hypothalamus. Cellular and molecular biology (Noisy-le-Grand, France) 43:543–548
87.Aoki Y, Watanabe T, Abe O et al. (2015) Oxytocin’s neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: a randomized controlled trial. Mol Psychiatry 20:447–453PubMed CentralCrossRefPubMed
88.Dadds MR, MacDonald E, Cauchi A, Williams K, Levy F, Brennan J (2014) Nasal oxytocin for social deficits in childhood autism: a randomized controlled trial. J Autism Dev Disord 44:521–531CrossRefPubMed
89.Guastella AJ, Gray KM, Rinehart NJ et al. (2015) The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: a randomized controlled trial. J Child Psychol Psychiatry 56:444–452CrossRefPubMed
90.Burne TH, Feron F, Brown J, Eyles DW, McGrath JJ, Mackay-Sim A (2004) Combined prenatal and chronic postnatal vitamin D deficiency in rats impairs prepulse inhibition of acoustic startle. Physiol Behav 81:651–655CrossRefPubMed
91.Vieth R (2006) What is the optimal vitamin D status for health? Prog Biophys Mol Biol 92:26–32CrossRefPubMed