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Abstract 

As a steroid hormone that regulates mineral homeostasis and bone metabolism, 1α, 
25-dihydroxycholecalciferol (calcitriol) also has broad spectrum anti-tumor activities as 
supported by numerous epidemiological and experimental studies. Calcitriol potentiates the 
anti-tumor activities of multiple chemotherapeutics agents including DNA-damaging agents 
cisplatin, carboplatin and doxorubicin; antimetabolites 5-fluorouracil, cytarabine, hydroxyu-
rea, cytarabine and gemcitabine; and microtubule-disturbing agents paclitaxel and docetaxel. 
Calcitriol elicits anti-tumor effects mainly through the induction of cancer cell apoptosis, cell 
cycle arrest, differentiation, angiogenesis and the inhibition of cell invasiveness by a number of 
mechanisms. Calcitriol enhances the cytotoxic effects of gamma irradiation and certain an-
tioxidants and naturally derived compounds. Inhibition of calcitriol metabolism by 
24-hydroxylase promotes growth inhibition effect of calcitriol. Calcitriol has been used in a 
number of clinical trials and it is important to note that sufficient dose and exposure to cal-
citriol is critical to achieve anti-tumor effect. Several trials have demonstrated that safe and 
feasible to administer high doses of calcitriol through intermittent regimen. Further well de-
signed clinical trials should be conducted to better understand the role of calcitriol in cancer 
therapy.  
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Introduction 
Vitamin D is a steroid hormone that regulates 

calcium homeostasis, bone metabolism and a variety 
of other physiological functions (1). Vitamin D can be 
obtained from ultraviolet light-induced photobioge-
nesis in the skin or from the diet (1). In the skin, 
7-dehydrocholesterol is converted to vitamin D3, 
which is hydroxylated to 25(OH)D3 by 
25-hydroxylase in the liver and then to 1,25(OH)2D3 
(1α, 25-dihydroxycholecalciferol, calcitriol), the hor-
monally active metabolite, by 1α-hydroxylase in the 
kidney (1). Calcitriol is mainly catabolized by 
24-hydroxylase (CYP24A1) to 1α,24, 25(OH) 2D3 
which loses its bioactivity (1). 

Calcitriol acts through both genomic and 
non-genomic mechanisms (2). In genomic pathways, 

calcitriol binds to intracellular vitamin D receptor 
(VDR), which subsequently heterodimerizes with 
another nuclear receptor retinoid X receptor (RXR). 
The heterodimer binds to vitamin D response element 
in target genes and leads to gene transcription regu-
lation (1). In addition, calcitriol has rapid effects that 
are independent of gene transcription regulation, 
which are defined as non-genomic effects and not 
mediated directly through steroid recep-
tor-ligand-DNA interaction. On the other hand, 
non-genomic actions may indirectly affect gene tran-
scription via the regulation of intracellular signaling 
pathways that target transcription factors (3). Calci-
triol induces a number of non-genomic responses in-
cluding rapid intestinal absorption of calcium, release 
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of calcium from intracellular stores, opening of vol-
tage-gated calcium and chloride channels, and the 
activation of protein kinase C, protein kinase A, 
phosphatidylinositol-3 kinase (PI3K) and phospholi-
pase C (4). 

Vitamin D compounds in cancer prevention 
and treatment 

Numerous epidemiological and preclinical stu-
dies support a role of vitamin D compounds in cancer 
prevention and treatment in colorectal, breast, pros-
tate, ovarian, bladder, lung and skin cancers and leu-
kemia (1, 5, 6) Low levels of plasma 25(OH)D3 are 
associated with higher cancer incidence and mortality 
in men in colorectal, breast, lung and prostate cancers 
(7-10). The broad spectrum anti-tumor effects of cal-
citriol and analogs are mostly based on inhibition of 
cancer cell proliferation and invasiveness, induction 
of differentiation and apoptosis, and promotion of 
angiogenesis.  

Calcitriol has been studied in various combina-
tion treatments and shown synergistic or additive 
antitumor activities. Cisplatin (cis-diammine- 
dichloro-platinum (II), cDDP) and its analog carbop-
latin (Di-amminecyclobutanedicarboxylatoplatinum, 
CBDCA) are widely used DNA-damaging agents. It is 
active in the treatment of testicular, ovarian, cervical, 
lung, bladder cancer and head and neck squamous 
cell carcinoma (SCC) (11, 12). Calcitriol enhances both 
carboplatin and cisplatin-mediated growth inhibition 
in breast cancer MCF-7 cells and prostate cancer 
LNCaP and DU145 cells (13, 14). Calcitriol potentiates 
cisplatin anti-tumor effect in a Y-79 human retinob-
lastoma xenograft model (15) and canine breast can-
cer, osteosarcoma, and mastocytoma cells (16). 
Ro23-7553 (1,25(OH) 2-16-ene-23-yne-D3), a calcitriol 
analog, inhibits tumor regrowth when combined with 
cisplatin in a SCC model system (17). Calcitriol pro-
motes the expression of mitogen-activated protein 
kinase kinase kinase (MEKK-1) and the cleavage of 
caspase 3 when used in combination with cisplatin in 
SCC cells (18). Additional studies support these find-
ings. SCC-VII and a calcitriol-resistant variant SCC 
(SCC-DR), generated by continuous culturing of SCC 
cells in calcitriol-containing media and has 
non-inducible VDR, are resistant to cisplatin (19). 
Pretreatment with calcitriol sensitizes SCC cells to 
cisplatin-induced growth inhibition and results in 
enhanced clonogenic cell kill in SCC. This effect is not 
seen in SCC-DR cells in vitro and in vivo. This sensi-
tization may be due to restored apoptotic pathway, as 
indicated by enhanced cleavage of pro-caspase 10 and 
PARP and increased DNA fragmentation. Calcitriol 
and cisplatin suppress SCC tumor growth much bet-

ter than either agent alone (19). Further study shows 
that calcitriol increased the protein level of p73, a p53 
family member, which contributed to calcitriol and 
cisplatin-mediated growth inhibition in SCC cells (19).  

Calcitriol sensitizes breast cancer cells to another 
DNA-damaging agent doxorubicin through the inhi-
bition of the expression and activity of cytoplasmic 
antioxidant enzyme Cu/Zn superoxide dismutase, 
which subsequently increases the oxidative damage 
by doxorubicin (20). Tamoxifen and calcitriol or its 
analog EB1089, KH1060, CB966 or OCT used together 
lead to enhanced growth inhibition in breast cancer 
cells MCF-7 than either agent alone (21). OCT and 
tamoxifen also inhibit MCF-7 xenograft tumor pro-
gression (22). 

Calcitriol also additively or synergistically po-
tentiates the anti-tumor activity of other types of 
chemotherapeutic agents. Calcitriol promotes tumor 
cell sensitivity to several antimetabolites, which in-
terfere with the synthesis of RNA and DNA. Calcitriol 
enhances cellular sensitivity of human colon cancer 
cells to 5-fluorouracil through calcium-sensing re-
ceptor (23). When added together or immediately 
after ara-C (cytarabine), calcitriol promotes the ac-
cumulation of DNA fragments and cytotoxicity (24). 
Calcitriol and cytarabine combination has been used 
in clinic as the minimally intensive chemotherapy, 
and prolonged remission in elderly patients with 
acute myeloid leukemia (AML) and myelodysplastic 
syndrome (MDS) (25, 26). Adenosine deami-
nase-resistant analog fludarabine synergistically en-
hances calcitriol-induced differentiation of human 
monoblastic leukemia U937 cells (27). Hydroxyurea, 
cytarabine or camptothecin acts synergistically with 
calcitriol to inhibit human monoblastic leukemia U937 
cell growth (28). Hydroxyurea also promotes calci-
triol-mediated U937 cell differentiation (28). Gemci-
tabine is a widely used antimetabolite, and the com-
bination of gemcitabine and cisplatin is the current 
standard chemotherapy regimen for locally advanced 
and metastatic bladder cancer (29, 30). Calcitriol en-
hances caspase-dependent apoptosis and synergisti-
cally promotes the anti-proliferative effects of gemci-
tabine and cisplatin in human bladder cancer model 
systems T24 and UMUC3 (31). We have shown in 
vitro in SCC cells that p73 is important in calcitriol 
antiproliferative effect; we are also examining p73 
status in vivo in human transitional cell carcinoma. 
The expression of p73 protein is lower in human 
bladder cancer tissue compared with adjacent normal 
tissue in 3 out of 4 pairs as assessed by immunoblot 
analysis (31). Calcitriol augments p73 protein level in 
T24 and UMUC3 bladder cancer cells, which may 
contribute to this growth inhibition (31). Pretreatment 



Journal of Cancer 2010, 1 

 
http://www.jcancer.org 

103

with calcitriol in combination with gemcitabine and 
cisplatin markedly inhibits T24 tumor growth in nude 
mice (31). Anti-tumor activity of gemcitabine is also 
augmented by calcitriol in Capan-1 human pancreatic 
cancer model system, as suggested by enhanced 
growth inhibition, apoptosis, inhibition of Akt sur-
vival pathway and xenograft tumor growth (32).  

Calcitriol potentiates antitumor activity of mi-
crotubule-disrupting agents such as paclitaxel (33, 34) 
and docetaxel (35). This effect is associated with re-
duced expression level of p21 in prostate cancer cell 
PC3 (33) or increased Bcl-2 phosphorylation in breast 
cancer cells (34), and multidrug resistance-associated 
protein 1 (35), respectively. Calcitriol analog 
1,25(OH)2-16-ene-23-yne-19-nor-26,27-F6-D3 (LH) or 
EB1089 also potentiates antitumor activity of pacli-
taxel in breast cancer model systems (36). Calcitriol 
analog ILX 23-7553 additively enhances the antitumor 
effects of both adriamycin and ionizing irradiation in 
breast tumor cells MCF-7 through growth inhibition 
and apoptosis induction (37). These substantial data 
suggest that the addition of calcitriol to multiple 
chemotherapy regimens increases the activity of such 
treatments and potentially a better response rate to 
the regimens.  

VDR forms heterodimer in association with RXR. 
RXR ligand 9-cis-retinoic acid (9-cis-RA) combined 
with calcitriol results in delayed tumor progression in 
the prostate PC3 tumor xenograft model in nude mice 
(38). This combination treatment results in direct 
binding of VDR/RXR heterodimer to the promoter 
region of human telomerase reverse transcriptase 
(hTERT) which inhibits the expression of hTERT and 
subsequently leads to decreased telomerase activity in 
prostate cancer cells (38). Calcitriol analog 
20-epi-22oxa-24a,26a,27a-tri-homo-1α,25(OH)2D3 
(KH1060) synergizes with 9-cis-RA to inhibit the 
growth and promote the differentiation of acute 
promyelocytic leukemia cells NB4 (39) and myelob-
lastic cells HL-60 (40). The combination leads to in-
creased apoptosis which is accompanied by reduced 
Bcl-2 expression and increased Bax expression (39).  

The antitumor activity of calcitriol may also in-
volve histone deacetylation. Combining histone dea-
cetylase inhibitor sodium butyrate or trichostatin A 
with calcitriol or its analog LH or 
1α,25-(OH)2-16,23E-diene-26,27-hexafluoride-D3 (LT) 
synergistically suppresses calcitriol or analog-induced 
growth inhibition in prostate cancer cell lines LNCaP, 
PC3 and DU145 (41). This effect is mediated by en-
hanced apoptosis instead of induction of cell cycle 
arrest (41). 

Besides chemotherapy, vitamin D is also used in 
combination with other types of cancer treatment. 

Calcitriol or its less calcaemic analogue 
19-nor-1α,25-(OH)2D2 acts synergistically with iro-
nizing radiation to inhibit the growth and apoptosis of 
LNCaP prostate cancer cells and primary tumor cells 
(42). EB1089 potentiates the antitumor activity of iro-
nizing radiation partially through increased apoptosis 
in breast cancer model system MCF-7 (43). Breast 
cancer cells overexpress one of the NF-κB subunits 
RelB, which promotes cancer cell survival. Calcitriol 
treatment results in reduced mRNA and protein le-
vels of RelB and its target genes survivin, Bcl-2 and 
MnSOD, and sensitizes the breast cancer cells Hs578T 
and NF639 to gamma-irradiation. Overexpression of 
RelB enhances NF639 cells survival following calci-
triol and irradiation treatment (44). Calcitriol pre-
treatment for 24 h enhances the phototoxic response 
of human SCC A431 cells to methyl aminolaevuli-
nate-based photodynamic therapy (45).  

Non-specific cyclooxygenase (COX) inhibitors 
acetyl salicylic acid or indomethacin in combination 
with calcitriol markedly induce differentiation of 
leukemia cell lines into monocytes and cell cycle ar-
rest at G1 phase (46). Cell differentiation is dependent 
on phosphorylation of Raf1 (46). The combination of 
ibuprofen, a non-steroidal anti-inflammatory drug 
(NSAID), and calcitriol results in greater growth in-
hibition and G1 cell cycle arrest in human prostate 
cancer LNCaP cells compared to either agent alone 
(47). A calcitriol analog 22-oxa-1α,25-(OH)2D3, when 
used together with vitamin K2, promotes leukemia 
cells HL-60 differentiate into monocytes as examined 
by morphology and cell surface CD14 expression in a 
synergistic nature (48). This combination also induces 
cell cycle arrest at G0/G1 phase; however, it sup-
presses apoptosis compared to vitamin K2 alone (48). 
Carnosic acid, a plant-derived polyphenolic antioxi-
dant, enhances the monocytic differentiation effects of 
calcitriol in human myeloid leukemia cells HL60 (49). 
Decreased intracellular reactive oxygen species, in-
creased intracellular glutathione, and activation of 
Raf-1/MEK1/ERK1/2 pathway are observed with the 
combination treatment (49). Bryostatin-1, a marine 
bryozoan-derived natural compound, has antitumor 
activities in both solid and lymphoid tumors (50). 
Bryostatin-1 synergizes with calcitriol to induce mo-
nocytic differentiation of NB4 cells (50, 51), which is 
associated with G1 phase cell cycle arrest, decreased 
cell growth and increased plastic adhesion (50). 
25(OH)D3, when used together with iron deprivation 
agents including iron chelators or transferrin receptor 
antibody A24, induces the differentiation of myeloid 
leukemia cell lines and primary myeloblasts from 
AML patients into monocytes/macrophages (52). 
These effects are dependent on the increased level of 
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reactive oxygen species and the activation of JNK 
MAPK pathway (52).  

Interaction of calcitriol with certain agents re-
sults in enhanced calcitriol anti-tumor activity. Ad-
ministration of dexamethasone (Dex), which reduces 
calcitriol-induced hypercalcemia, prior to calcitriol 
inhibits SCC cell proliferation compared to calcitriol 
alone (53). Combined treatment with Dex and calci-
triol reduces SCC xenograft tumor growth. These 
findings are associated with the observations that Dex 
enhances VDR expression in SCC cells and VDR li-
gand binding activities in tumor cell extracts and 
kidneys but decreases that in intestinal mucosa (53). 
Further studies show that the combination of calcitriol 
and Dex apoptosis and cell cycle arrest at G0/G1 in 
SCC cells (54). This combination also suppresses the 
activation of Akt and ERK1/2 pathways (54).  

The effect of calcitriol is modulated by its meta-
bolizing enzymes. The primary vitamin D3 inactivat-
ing enzyme CYP24A1, a mitochondrial cytochrome 
P450, induces calcitriol degradation and thereby inhi-
bits calcitriol biological activity. The broad spectrum 
cytochrome P450 inhibitor ketoconazole (KTZ) or a 
specific CYP24A1 inhibitor RC2204, which effectively 
inhibits the expression and enzyme activity of 
CYP24A1 in PC3 cells and mice kidney tissue, syner-
gistically inhibits the anti-proliferative effect of calci-
triol in human prostate PC3 cells (55). Dex is admi-
nistered together with KTZ to minimize calci-
triol-mediated hypercalcemia. Enhanced apoptosis is 
observed which does not involve caspase 3 activation 
but the translocation of apoptosis inducing factor 
(AIF) to the nucleus. Calcitriol and ketoconazle/Dex 
combination enhances the growth inhibition observed 
with calcitriol alone in PC3 xenograft tumor mouse 
model (55). KTZ also potentiates the anti-proliferative 
effect of calcitriol or its analog EB1089 in prostate 
cancer cells (56). An imidazole derivative liarozole 
inhibits CYP24 activity in prostate cancer cells DU145 
and thus sensitizes these cells to calcitriol-mediated 
growth inhibition, which is associated with increased 
VDR expression (57).  

RRR-alpha-vitamin E succinate (VES), one of the 
most effective vitamin E forms, induces VDR expres-
sion in prostate cancer cells (58). Pretreatment with 
VES synergistically enhances calcitriol-mediated 
growth inhibition of prostate cancer cells in vitro and 
reduces the rate of prostate cancer xenograft tumor 
growth (58), which allows for a low-dose calcitriol to 
be administered. A glutathione-depleting compound, 
menadione, sensitizes breast cancer cells MCF-7 to 
calcitriol-mediated growth inhibition, which may be 
caused, at least in part, by the increased oxidative 
stress, as shown by enhanced ROS production (59). 

Genistein, an isoflavone found in soybeans and a 
number of plants, in combination with calcitriol, in-
hibits cell growth in human prostate LNCaP cells, 
which is dependent on increased expression of p21 
and associated with increased VDR expression (60). 
Another study shows that genistein and calcitriol 
further reduce prostate DU145 cell proliferation 
compared to either agent alone (61). The mechanisms 
for this effect may involve the induction of mRNA 
expression and enzyme activity of CYP24 by genistein 
which leads to prolonged half-life of calcitriol (61). 
Increased expression of VDR protein, VDR transcrip-
tional activity, and the expression of VDR target genes 
are also observed in the combination treatment group 
(61). A medicinal herb ginseng (Panax ginseng C.A. 
Meyer, Araliaceae) promotes calcitriol-induced the 
differentiation of leukemia cells HL-60 into mono-
cytes as assessed by expression levels of CD14 and 
CD11b (62). This effect may be mediated by the 
ERK1/2 and PKC, but not PI3K pathway (62).  

Phosphorylated prolactin (PRL) antagonizes the 
proliferation promoting effect of unmodified PRL. 
Molecular mimicry of naturally phosphorylated hu-
man PRL at the major phosphorylation site S179, 
S179D (PRL), sensitizes relatively vitamin 
D-insensitive prostate cancer cells DU-145 and PC3 to 
calcitriol-mediated anti-proliferative effect and 
apoptosis, which is associated with increased VDR 
and p21 expression (63). Secreted protein acidic and 
rich in cysteine (SPARC; osteonectin, BM-40), a family 
member of matricellular proteins including throm-
bospondins, tenascin, and osteopontin, may serve as a 
tumor suppressor (64). Compared with parental 
MIP101 colorectal cancer cells, calcitriol markedly 
reduces cell growth and enhances calcitriol alone- or 
calcitriol+fluorouracil-induced apoptosis in 
SPARC-overexpressing MIP101 cells (64). Calcitriol 
treatment also suppresses the phosphorylation of Akt 
and the expression of Bcl-2 family member BAD (64). 

Calcitriol has been utilized in a number of clini-
cal studies, either alone or in combination with Dex or 
cytotoxic agents, which has been reviewed (65, 66). It 
is important to emphasize that anti-tumor activity of 
calcitriol is dependent on its dose and exposure ac-
cording to preclinical studies. Exposure to high con-
centrations of calcitriol is necessary to achieve an-
ti-tumor results. Calcitriol or its analog Ro23-7553 
delays SCC xenograft tumor growth in a dose de-
pendent manner (67). Calcitriol of 2.5 μg/mouse ad-
ministered twice a week results in a markedly 
stronger tumor suppression compared with once a 
week regimen in human pancreatic cancer model 
system Capan-1 (32). Pharmacokinectic (PK) studies 
indicate that calcitriol of 0.125 μg/mouse results in a 
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Cmax > 10.0 ng/ml and AUC > 40.0 ng h/mL in normal 
mice (68), which exceeds the concentration needed for 
calcitriol anti-tumor activity in vitro.  

Although multiple clinical studies have been 
conducted with calcitriol or its analogs, the anti-tumor 
results are largely disappointing. This may be due to 
the fact that calcitriol or its analogs has been used at 
much lower doses than maximum tolerated dose 
(MTD) with the concern of dose-limiting hypercalce-
mia (69, 70). We and others demonstrate that suffi-
cient doses of calcitriol to achieve exposure similar to 
those seen in preclinical models can be safely admi-
nistered by high dose intermittent regimen (once 
weekly or QDx3 weekly) (69, 71-73). A recent phase I 
clinical trial demonstrates that the MTD of calcitriol 
(i.v.) is 74 μg/week when administered with gefitinib 
(70). The Cmax of calcitriol at the MTD is 6.68 ± 1.42 
ng/ml (16 ± 3.40 nmol/L), which is much higher than 
the dose needed to elicit anti-tumor effect in preclini-
cal studies (70). The area under the curve (AUC) of 
calcitriol at the MTD is 35.65 ± 8.01 ng h/mL (70). In 
comparison, 75 μg of DN101, a weekly oral formula-
tion of calcitriol, results in a lower Cmax (3.8 nmol/L) 
but similar AUC (38.4 ng h/mL) (74). These results 
show that high doses of calcitriol can be administered 
alone or in combination with other agents to elicit or 
enhance the anti-tumor effects. 

Summary 
In summary, calcitriol has shown potential in 

enhancing the antitumor activities of a variety of cy-
totoxic or differentiating agents. The combination 
treatment studies with calcitriol do provide evidence 
and support for the continued study of calcitriol in 
cancer chemotherapies.  
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