Effects of an Individualized vs. Standardized Vitamin D Supplementation on the 25(OH)D Level in Athletes
Nutrients 2023, 15(22), 4747; https://doi.org/10.3390/nu15224747
by Chiara Tuma 1,2,*ORCID, Arne Schick 1,Nele Pommerening 1,Hans Braun 1,2 and Mario Thevis 1,3
- 1 Institute of Biochemistry/Center of Preventive Doping Research, German Sport University Cologne, 50933 Cologne, Germany
- 2 German Research Centre of Elite Sports (Momentum), German Sport University Cologne, 50933 Cologne, Germany
- 3 European Monitoring Center for Emerging Doping Agents, 50933 Cologne, Germany
Vitamin D is crucial to the health and performance of athletes. Although the exact vitamin D requirements for athletes have not been established, maintaining a 25(OH)D level of at least 40 ng/mL is considered beneficial. This randomized controlled intervention study aimed to determine whether an individual loading dose formula for vitamin D supplementation is more effective than standardized supplementation and suitable enough for athletes to meet a target value of 40 ng/mL. In a 10-week supplementation study conducted during the winter months in Germany, 90 athletes with insufficient vitamin D levels (25(OH)D < 30 ng/mL) were randomly assigned to receive either a universal dose of 2000 IU/day of vitamin D or a loading dose of 4000 IU/day, followed by a maintenance dose of 1000 IU/day. The total 25(OH)D concentration was measured from dried blood spots at three time points: at baseline, at the computed date of 40 ng/mL, and after the 10-week period. Additionally, a vitamin-D-specific questionnaire was issued.
On the day when 25(OH)D blood concentrations of 40 ng/mL were calculated to prevail, the individualized group had a significantly higher 25(OH)D level than the standardized group (41.1 ± 10.9 ng/mL vs. 32.5 ± 6.4 ng/mL, p < 0.001). This study demonstrated that the examined formula is suitable enough for athletes to achieve a 25(OH)D concentration of 40 ng/mL. This indicates that a personalized approach is more effective than a one-size-fits-all approach in restoring adequate vitamin D levels in athletes.
 Download the PDF from Vitamin D Life
64 References
- Wang, T.-T.; Tavera-Mendoza, L.E.; Laperriere, D.; Libby, E.; MacLeod, N.B.; Nagai, Y.; Bourdeau, V.; Konstorum, A.; Lallemant, B.; Zhang, R.; et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol. Endocrinol. 2005,19,2685-2695. [CrossRef]
- Owens, D.J.; Allison, R.; Close, G.L. vitamin D and the Athlete: Current Perspectives and New Challenges. Sports Med. 2018, 48, 3-16. [CrossRef] [PubMed]
- Charoenngam, N.; Shirvani, A.; Holick, M.F. vitamin D for skeletal and non-skeletal health: What we should know. J. Clin. Orthop. Trauma 2019,10,1082-1093. [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [CrossRef] [PubMed]
- Goussetis, E.; Spiropoulos, A.; Tsironi, M.; Skenderi, K.; Margeli, A.; Graphakos, S.; Baltopoulos, P.; Papassotiriou, I. Spartathlon, a 246 kilometer foot race: Effects of acute inflammation induced by prolonged exercise on circulating progenitor reparative cells. Blood Cells Mol. Dis. 2009, 42, 294-299. [CrossRef]
- Lippi, G.; Schena, F.; Salvagno, G.L.; Montagnana, M.; Gelati, M.; Tarperi, C.; Banfi, G.; Guidi, G.C. Acute variation of biochemical markers of muscle damage following a 21-km, half-marathon run. Scand. J. Clin. Lab. Investig. 2008, 68, 667-672. [CrossRef]
- McAnulty, S.R.; McAnulty, L.S.; Nieman, D.C.; Morrow, J.D.; Utter, A.C.; Dumke, C.L. Effect of resistance exercise and carbohydrate ingestion on oxidative stress. Free Radic. Res. 2005, 39,1219-1224. [CrossRef]
- McBride, J.M.; Kraemer, W.J.; Triplett-McBride, T.; Sebastianelli, W. Effect of resistance exercise on free radical production. Med. Sci. Sports Exerc. 1998, 30, 67-72. [CrossRef]
- Ostrowski, K.; Schjerling, P.; Pedersen, B.K. Physical activity and plasma interleukin-6 in humans—Effect of intensity of exercise. Eur. J. Appl. Physiol. 2000, 83, 512-515. [CrossRef]
- Barker, T.; Martins, T.B.; Hill, H.R.; Kjeldsberg, C.R.; Dixon, B.M.; Schneider, E.D.; Henriksen, V.T.; Weaver, L.K. Circulating pro-inflammatory cytokines are elevated and peak power output correlates with 25-hydroxyvitamin D in vitamin D insufficient adults. Eur. J. Appl. Physiol. 2013,113,1523-1534. [CrossRef]
- Nash, D.; Hughes, M.G.; Butcher, L.; Aicheler, R.; Smith, P.; Cullen, T.; Webb, R. IL-6 signaling in acute exercise and chronic training: Potential consequences for health and athletic performance. Scand. J. Med. Sci. Sports 2023, 33, 4-19. [CrossRef]
- Girgis, C.M.; Clifton-Bligh, R.J.; Hamrick, M.W.; Holick, M.F.; Gunton, J.E. The Roles of vitamin D in Skeletal Muscle: Form, Function, and Metabolism. Endocr. Rev. 2013, 34, 33-83. [CrossRef] [PubMed]
- Girgis, C.M.; Mokbel, N.; Cha, K.M.; Houweling, P.J.; Abboud, M.; Fraser, D.R.; Mason, R.S.; Clifton-Bligh, R.J.; Gunton, J.E. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology 2014,155, 3227-3237. [CrossRef]
- Close, G.L.; Leckey, J.; Patterson, M.; Bradley, W.; Owens, D.J.; Fraser, W.D.; Morton, J.P. The effects of vitamin D(3) supplementation on serum total 25[OH]D concentration and physical performance: A randomised dose-response study. Br. J. Sports Med. 2013, 47, 692-696. [CrossRef]
- Larson-Meyer, E. vitamin D Supplementation in Athletes. In Nestlé Nutrition Institute Workshop Series; Tipton, K.D., van Loon, L.J.C., Eds.; S.Karger AG: Basel, Switzerland, 2013; Volume 75, pp. 109-121. ISBN 978-3-318-02332-9.
- Ogan, D.; Pritchett, K. vitamin D and the Athlete: Risks, Recommendations, and Benefits. Nutrients 2013,5,1856-1868. [CrossRef] [PubMed]
- Cannell, J.J.; Hollis, B.W.; Sorenson, M.B.; Taft, T.N.; Anderson, J.J.B. Athletic performance and vitamin D. Med. Sci. Sports Exerc. 2009, 41,1102-1110. [CrossRef]
- de la Puente Yagüe, M.; Collado Yurrita, L.; Ciudad Cabañas, M.J.; Cuadrado Cenzual, M.A. Role of vitamin D in Athletes and Their Performance: Current Concepts and New Trends. Nutrients 2020,12, 579. [CrossRef]
- Farrokhyar, F.; Tabasinejad, R.; Dao, D.; Peterson, D.; Ayeni, O.R.; Hadioonzadeh, R.; Bhandari, M. Prevalence of vitamin D inadequacy in athletes: A systematic-review and meta-analysis. Sports Med. 2015, 45, 365-378. [CrossRef]
- Ip, T.S.-T.; Fu, S.-C.; Ong, M.T.-Y.; Yung, P.S.-H. vitamin D deficiency in athletes: Laboratory, clinical and field integration. Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2022, 29, 22-29. [CrossRef]
- Constantini, N.W.; Arieli, R.; Chodick, G.; Dubnov-Raz, G. High prevalence of vitamin D insufficiency in athletes and dancers. Clin. J. Sport. Med. 2010,20, 368-371. [CrossRef]
- Halliday, T.M.; Peterson, N.J.; Thomas, J.J.; Kleppinger, K.; Hollis, B.W.; Larson-Meyer, D.E. vitamin D status relative to diet, lifestyle, injury, and illness in college athletes. Med. Sci. Sports Exerc. 2011, 43, 335-343. [CrossRef]
- Hamilton, B.; Grantham, J.; Racinais, S.; Chalabi, H. vitamin D deficiency is endemic in Middle Eastern sportsmen. Public. Health Nutr. 2010,13,1528-1534. [CrossRef] [PubMed]
- Spiro, A.; Buttriss, J.L. vitamin D: An overview of vitamin D status and intake in Europe. Nutr. Bull. 2014, 39,322-350. [CrossRef]
- Ribbans, W.J.; Aujla, R.; Dalton, S.; Nunley, J.A. vitamin D and the athlete-patient: State of the art. J. ISAKOS 2021, 6, 46-60. [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine Society Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96,1911-1930. [CrossRef] [PubMed]
- Barger-Lux, M.J.; Heaney, R.P.; Dowell, S.; Chen, T.C.; Holick, M.F. vitamin D and its major metabolites: Serum levels after graded oral dosing in healthy men. Osteoporos. Int. 1998, 8, 222-230. [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Opinion on the Tolerable Upper Intake Level of vitamin D. EFSA J. 2012,10, 2813. [CrossRef]
- van Groningen, L.; Opdenoordt, S.; van Sorge, A.; Telting, D.; Giesen, A.; Boer, H. de Cholecalciferol loading dose guideline for vitamin D-deficient adults. Eur. J. Endocrinol. 2010,162, 805-811. [CrossRef]
- Tuma, C.; Thomas, A.; Braun, H.; Thevis, M. Quantification of 25-hydroxyvitamin D2 and D3 in Mitra® devices with volumetric absorptive microsampling technology (VAMS®) by UHPLC-HRMS for regular vitamin D status monitoring. J. Pharm. Biomed. Anal. 2023, 228, 115314. [CrossRef]
- Larson-Meyer, D.E.; Douglas, C.S.; Thomas, J.J.; Johnson, E.C.; Barcal, J.N.; Heller, J.E.; Hollis, B.W.; Halliday, T.M. Validation of a vitamin D Specific Questionnaire to Determine vitamin D Status in Athletes. Nutrients 2019,11, 2732. [CrossRef]
- Fitzpatrick, T.B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 1988,124,869-871. [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39,175-191. [CrossRef] [PubMed]
- Backx, E.M.P.; Tieland, M.; Maase, K.; Kies, A.K.; Mensink, M.; van Loon, L.J.C.; de Groot, L.C.P.G.M. The impact of 1-year vitamin D supplementation on vitamin D status in athletes: A dose-response study. Eur. J. Clin. Nutr. 2016, 70,1009-1014. [CrossRef]
- Lee, P.; Greenfield, J.R.; Seibel, M.J.; Eisman, J.A.; Center, J.R. Adequacy of vitamin D replacement in severe deficiency is dependent on body mass index. Am. J. Med. 2009,122,1056-1060. [CrossRef]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 2000, 72, 690-693. [CrossRef]
- Arabi, S.M.; Sedaghat, A.; Ehsaei, M.R.; Safarian, M.; Ranjbar, G.; Rezaee, H.; Rezvani, R.; Tabesh, H.; Norouzy, A. Efficacy of high-dose versus low-dose vitamin D supplementation on serum levels of inflammatory factors and mortality rate in severe traumatic brain injury patients: Study protocol for a randomized placebo-controlled trial. Trials 2020, 21, 685. [CrossRef] [PubMed]
- Mazess, R.B.; Bischoff-Ferrari, H.A.; Dawson-Hughes, B. vitamin D: Bolus Is Bogus-A Narrative Review. JBMR Plus 2021, 5, e10567. [CrossRef]
- Hewison, M. vitamin D and the immune system: New perspectives on an old theme. Endocrinol. Metab. Clin. N. Am. 2010, 39, 365-379. [CrossRef]
- Hollis, B.W.; Wagner, C.L. Clinical review: The role of the parent compound vitamin D with respect to metabolism and function: Why clinical dose intervals can affect clinical outcomes. J. Clin. Endocrinol. Metab. 2013, 98, 4619-4628. [CrossRef]
- Ketha, H.; Thacher, T.D.; Oberhelman, S.S.; Fischer, P.R.; Singh, R.J.; Kumar, R. Comparison of the Effect of Daily Versus Bolus Dose Maternal vitamin D3 Supplementation on the 24,25-dihydroxyvitamin D3 to 25-hydroxyvitamin D3 Ratio. Bone 2018,110, 321-325. [CrossRef]
- Hamilton, B.; Whiteley, R.; Farooq, A.; Chalabi, H. vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J. Sci. Med. Sport. 2014,17,139-143. [CrossRef] [PubMed]
- Koundourakis, N.E.; Androulakis, N.E.; Malliaraki, N.; Margioris, A.N. vitamin D and Exercise Performance in Professional Soccer Players. PLoS ONE 2014, 9, e101659. [CrossRef] [PubMed]
- Ksiazek, A.; Dziubek, W.; Pietraszewska, J.; Slowinska-Lisowska, M. Relationship between 25(OH)D levels and athletic performance in elite Polish judoists. Biol. Sport. 2018, 35,191-196. [CrossRef] [PubMed]
- Seo, M.-W.; Song, J.K.; Jung, H.C.; Kim, S.-W.; Kim, J.-H.; Lee, J.-M. The Associations of vitamin D Status with Athletic Performance and Blood-borne Markers in Adolescent Athletes: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2019, 16, 3422. [CrossRef]
- Forney, L.A.; Earnest, C.P.; Henagan, T.M.; Johnson, L.E.; Castleberry, T.J.; Stewart, L.K. vitamin D status, body composition, and fitness measures in college-aged students. J. Strength. Cond. Res. 2014, 28, 814-824. [CrossRef]
- Jastrzebska, M.; Kaczmarczyk, M.; Michalczyk, M.; Radziminski, t.; Stepien, P.; Jastrzebska, J.; Wakuluk, D.; Suárez, A.D.; López Sánchez, G.F.; Cieszczyk, P.; et al. Can Supplementation of vitamin D Improve Aerobic Capacity in Well Trained Youth Soccer Players? J. Hum. Kinet. 2018, 61, 63-72. [CrossRef]
- Koundourakis, N.E.; Androulakis, N.E.; Malliaraki, N.; Tsatsanis, C.; Venihaki, M.; Margioris, A.N. Discrepancy between exercise performance, body composition, and sex steroid response after a six-week detraining period in professional soccer players. PLoS ONE 2014, 9, e87803. [CrossRef]
- Zeitler, C.; Fritz, R.; Smekal, G.; Ekmekcioglu, C. Association Between the 25-Hydroxyvitamin D Status and Physical Performance in Healthy Recreational Athletes. Int. J. Environ. Res. Public. Health 2018,15, 2724. [CrossRef]
- Rebolledo, B.J.; Bernard, J.A.; Werner, B.C.; Finlay, A.K.; Nwachukwu, B.U.; Dare, D.M.; Warren, R.F.; Rodeo, S.A. The Association of vitamin D Status in Lower Extremity Muscle Strains and Core Muscle Injuries at the National Football League Combine. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34,1280-1285. [CrossRef]
- Yoon, S.; Kwon, O.; Kim, J. vitamin D in athletes: Focus on physical performance and musculoskeletal injuries. Phys. Act. Nutr. 2021, 25, 20-25. [CrossRef]
- Knechtle, B.; Jastrzebski, Z.; Hill, L.; Nikolaidis, P.T. vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures-A Narrative Review. Medicina 2021, 57, 223. [CrossRef] [PubMed]
- Millward, D.; Root, A.D.; Dubois, J.; Cohen, R.P.; Valdivia, L.; Helming, B.; Kokoskie, J.; Waterbrook, A.L.; Paul, S. Association of Serum vitamin D Levels and Stress Fractures in Collegiate Athletes. Orthop. J. Sports Med. 2020, 8, 2325967120966967. [CrossRef] [PubMed]
- Senisik, S.; Koyagasioglu, O.; Denerel, N. vitamin D levels on sports injuries in outdoor and indoor athletes: A cross-sectional study. Phys. Sport. 2022, 50,164-170. [CrossRef] [PubMed]
- Mieszkowski, J.; Borkowska, A.; Stankiewicz, B.; Kochanowicz, A.; Niespodzihski, B.; Surmiak, M.; Waldzihski, T.; Rola, R.; Petr, M.; Antosiewicz, J. Single High-Dose vitamin D Supplementation as an Approach for Reducing Ultramarathon-Induced Inflammation: A Double-Blind Randomized Controlled Trial. Nutrients 2021,13,1280. [CrossRef] [PubMed]
- Van Uytfanghe, K.; Heughebaert, L.; Stove, C.P. Self-sampling at home using volumetric absorptive microsampling: Coupling analytical evaluation to volunteers' perception in the context of a large scale study. Clin. Chem. Lab. Med. (CCLM) 2021, 59, e185-e187. [CrossRef]
- Denniff, P.; Spooner, N. Volumetric Absorptive Microsampling: A Dried Sample Collection Technique for Quantitative Bioanalysis. Anal. Chem. 2014, 86, 8489-8495. [CrossRef]
- De Kesel, P.M.; Sadones, N.; Capiau, S.; Lambert, W.E.; Stove, C.P. Hemato-critical issues in quantitative analysis of dried blood spots: Challenges and solutions. Bioanalysis 2013, 5, 2023-2041. [CrossRef] [PubMed]
- De Kesel, P.M.M.; Lambert, W.E.; Stove, C.P. Does volumetric absorptive microsampling eliminate the hematocrit bias for caffeine and paraxanthine in dried blood samples? A comparative study. Anal. Chim. Acta 2015, 881, 65-73. [CrossRef]
- Denniff, P.; Spooner, N. The effect of hematocrit on assay bias when using DBS samples for the quantitative bioanalysis of drugs. Bioanalysis 2010,2,1385-1395. [CrossRef]
- Jensen, B.P.; Saraf, R.; Ma, J.; Berry, S.; Grant, C.C.; Camargo, C.A.; Sies, C.W. Quantitation of 25-hydroxyvitamin D in dried blood spots by 2D LC-MS/MS without derivatization and correlation with serum in adult and pediatric studies. Clin. Chim. Acta 2018, 481, 61-68. [CrossRef]
- Newman, M.S.; Brandon, T.R.; Groves, M.N.; Gregory, W.L.; Kapur, S.; Zava, D.T. A Liquid Chromatography/Tandem Mass Spectrometry Method for Determination of 25-Hydroxy vitamin D 2 and 25-Hydroxy vitamin D 3 in Dried Blood Spots: A Potential Adjunct to Diabetes and Cardiometabolic Risk Screening. J. Diabetes Sci. Technol. 2009, 3,156-162. [CrossRef] [PubMed]
- Ackermans, M.T.; de Kleijne, V.; Martens, F.; Heijboer, A.C. Hematocrit and standardization in DBS analysis: A practical approach for hormones mainly present in the plasma fraction. Clin. Chim. Acta 2021, 520,179-185. [CrossRef] [PubMed]
- Chen, P.-Z.; Li, M.; Duan, X.-H.; Jia, J.-Y.; Li, J.-Q.; Chu, R.-A.; Yu, C.; Han, J.-H.; Wang, H. Pharmacokinetics and effects of demographic factors on blood 25(OH)D3 levels after a single orally administered high dose of vitamin D3. Acta Pharmacol. Sin. 2016, 37,1509-1515. [CrossRef] [PubMed]
There are many successful ways to individualize dosing
- Reasons for low response to vitamin D
- work in progress Personalized treatment of Vitamin D
- Response to Vitamin D fortification varies from 1 to 10 nmol per 100 IU daily – review Aug 2023
- No response to vitamin D 7X more likely if poor CYP24A1 or VDBP genes - Feb 2023
- Molecular Approaches for Optimizing Vitamin D (one size does not fit all) – Carlberg Nov 2015
- Vitamin D Nutrigenomics - High, Medium, and Low Responders - March 2019
- Huge variation in response to vitamin D supplementation – personal vitamin D response index – Dec 2016
Vitamin D Life – Overview Sports and vitamin D contains
Athletes are helped by vitamin D by:
- Faster reaction time
- Far fewer colds/flus during the winter
- Less sore/tired after a workout
- Fewer micro-cracks and broken bones
- Bones which do break heal much more quickly
- Increased VO2 and exercise endurance Feb 2011
- Indoor athletes especially need vitamin D
- Professional indoor athletes are starting to take vitamin D and/or use UV beds
- Olympic athletes have used UV/vitamin D since the 1930's
- The biggest gain from the use of vitamin D is by those who exercise less than 2 hours per day.
- Reduced muscle fatigue with 10,000 IU vitamin D daily
- Muscle strength improved when vitamin D added: 3 Meta-analysis
- Reduced Concussions
See also: Sports and Vitamin D category273 items Vitamin D Life – Sports category contains
273 items in Sports category Sports benefits from up to 50 ng (click on chart for details)
see also:
Overview Sports and vitamin D Concussions
Military Muscle Overview Fractures and vitamin D
Vitamin D supplementation increases strength of lower muscles – Meta-analysis April 2019
Athletes helped by weekly 50,000 IU Vitamin D – RCT Aug 2019
College swimmers helped by daily 5,000 IU of Vitamin D in the fall – RCT Feb 2020
Shin splints decrease with vitamin D
Less muscle inflammation after exercise if high level of Vitamin D (50 ng) -July 2021 50 ng
Only 1 NCAA basketball player getting 10,000 IU vitamin D daily achieved 50 ng goal – Jan 2020 50 ng
NCAA trainers are getting on board the Vitamin D train (40-50 ng)– Nov 2019 50 ng
Is 50 ng of vitamin D too high, just right, or not enough 50 ng
The only independent predictor of aerobic power: Vitamin D - 2021
Olympic Committee consensus on Vitamin D, Omega-3, Zinc, etc– May 2018 not consdered "doping"
Some Foot and ankle problems are treated by Vitamin D – many studies
Typical stress fracture during US Navy training cost 14,953 dollars, most had less than 40 ng Vitamin D - June 2022
Vitamin D trials by military – all 4 found benefit – review Sept 2019
Vitamin D supplementation increases strength of lower muscles – Meta-analysis April 2019
Omega-3 helps muscles - many studiesIndividualized – RCT Nov 20231434 visitors, last modified 12 Mar, 2024, This page is in the following categories (# of items in each category)