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Abstract Dengue and chikungunya are increasing global public health concerns due to their rapid

geographical spread and increasing disease burden. Knowledge of the contemporary distribution of

their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by

an ongoing range expansion fuelled by increased global trade and travel. Mapping the global

distribution of these vectors and the geographical determinants of their ranges is essential for public

health planning. Here we compile the largest contemporary database for both species and pair it

with relevant environmental variables predicting their global distribution. We show Aedes

distributions to be the widest ever recorded; now extensive in all continents, including North

America and Europe. These maps will help define the spatial limits of current autochthonous

transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological

baseline that we can hope to project future health impacts of these viruses.

DOI: 10.7554/eLife.08347.001

Introduction
The mosquitoes Aedes aegypti [= Stegomyia aegypti] and Aedes albopictus [= Stegomyia albopicta]

(Reinert et al., 2009) are vectors of several globally important arboviruses, including dengue virus

(DENV) (Simmons et al., 2012), yellow fever virus (Jentes et al., 2011), and chikungunya virus (CHIKV)

(Leparc-Goffart et al., 2014). The public health impact of DENV and CHIKV has increased
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dramatically over the last 50 years, with both diseases spreading to new geographic locations and

increasing in incidence within their range (Weaver, 2014). The remaining burden of vaccine-

preventable yellow fever is similarly likely to be dramatically underestimated (Garske et al., 2014).

DENV, with a nearly ubiquitous distribution in the tropics and more recently introduced to Europe

(ECDC, 2014; Schaffner and Mathis, 2014), is the most prevalent human arboviral infection causing

100 million apparent annual infections world-wide with almost half of the world’s population at risk of

infection (Brady et al., 2012; Bhatt et al., 2013). CHIKV recently received considerable public health

attention due to the outbreaks in Réunion in 2005–2006 (225,000 infections) (Borgherini et al., 2007),

Italy in 2007 (205 infections) (Rezza et al., 2007), and France in 2010 and 2014 (2 and 11 locally

transmitted cases, respectively) (La Ruche et al., 2010; Grandadam et al., 2011; Paty et al., 2014) as

well as its recent invasion into the Americas with over 1 million cases recorded to date (Cauchemez

et al., 2014; Johansson et al., 2014; Morens and Fauci, 2014). Increases in distribution and intensity

of transmission are compounded by the lack of commercially available antivirals or vaccines for either

disease (Simmons et al., 2012; Roy et al., 2014), although new therapeutics and vaccines are in

development (McArthur et al., 2013; Powers, 2014; Villar et al., 2015). Similarly, while yellow fever

infections have been on the decline due to extensive vector control and an effective vaccine

developed more than 70 years ago, it still causes a significant disease burden in Africa and South

America (Poland et al., 1981; World Health Organization, 1990; Garske et al., 2014). Given the

public health impact of these diseases and their rapid global spread, understanding the current and

future distribution, and determining the geographic limits of transmission and transmission intensity,

will enable more efficient planning for disease control (Carrington and Simmons, 2014; Semenza

et al., 2014; Messina et al., 2015). Because these diseases can only persist where their mosquito

vectors, Ae. aegypti and Ae. albopictus are present, understanding the distributions of these two

species underpins this strategy.

The global expansion of these arboviruses was preceded by the global spread of their vectors

(Charrel et al., 2014). Ae. aegypti originated in Africa where its ancestral form was a zoophilic

treehole mosquito named Ae. aegypti formosus (Brown et al., 2014). The domestic form Ae. aegypti

eLife digest Mosquitoes spread many disease-causing viruses and parasites between people

and other animals, including viral infections such as dengue and chikungunya. Both infections cause

high fevers often accompanied with excruciating joint pain or other flu-like symptoms. Dengue and

chikungunya have become growing public health problems over the last fifty years. Today about half

of the world’s population is at risk of dengue infection, while chikungunya outbreaks, which were

previously limited to Africa and Asia, have recently been reported in the Caribbean, South America

and Europe.

The dengue and chikungunya viruses are transmitted between people by two species of

mosquitoes called Aedes aegypti and Ae. albopictus. Therefore it is important to work out where

these mosquito species are found around the globe to identify the areas at risk. It is also important to

predict where these species could become established if they were introduced, in order to identify

areas that could become at risk in the future.

Kraemer et al. now provide updated predictions about the distribution of these two mosquito

species around the globe. These predictions are based upon the most up-to-date data on the known

locations of the species combined with information on environmental conditions across the globe.

The updated maps show that these Aedes mosquitoes are now found across all continents, including

North America and Europe.

Aedes albopictus mosquitoes in particular are rapidly expanding their territory around the globe.

Kraemer et al. used their new maps to show that, unlike in the United States, many of the areas in

Europe and China that could support this mosquito species do not yet appear to have been

colonized.

These findings provide a map of the distribution of both species as it stands at the moment.

Further work is now needed to better understand which factors are contributing to the rapid

expansion of these mosquitoes’ range and what might be done to control this spread.

DOI: 10.7554/eLife.08347.002
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is genetically distinct with discrete geographic niches (Brown et al., 2011). It was hypothesised that

due to harsh conditions coupled with the onset of the slave trade, Ae. aegypti were introduced into

the New World from Africa, from where it subsequently spread globally to tropical and sub-tropical

regions of the world (Brown et al., 2014). Ae. albopictus, originally a zoophilic forest species from

Asia, spread to islands in the Indian and Pacific Oceans (Delatte et al., 2009). During the 1980s it

rapidly expanded its range to Europe, the United States and Brazil (Medlock et al., 2012; Carvalho

et al., 2014). Today both Ae. aegypti and Ae. albopictus are present in most Asian cities and large

parts of the Americas (Lambrechts et al., 2011). Ae. aegypti feed almost exclusively on humans in

daylight hours and typically rest indoors (Scott and Takken, 2012). In contrast Ae. albopictus is

usually exophagic and bites humans and animals opportunistically (Paupy et al., 2009) but has also

been shown to exhibit strongly anthropophilic behavior similar to Ae. aegypti in specific contexts

(Ponlawat and Harrington, 2005; Delatte et al., 2010).

A number of previous studies have mapped the global or regional distributions of Ae. aegypti and

Ae. albopictus by focusing on different aspects of their ecology. The majority examined the impacts of

climatic conditions, often with an exclusive focus on temperature. Kobayashi et al. (2002) and

Nawrocki and Hawley (1987) used results from laboratory studies to identify potential limits

of establishment in Japan and Asia suggesting a minimum mean temperature in the coldest months of

−2˚C and −5˚C respectively limits their distribution. Brady et al. (2013) extended that work by

modeling the adult survival of both species under laboratory and field conditions, indicating that

Ae. albopictus has higher survival rates than Ae. aegypti, though adults of the latter can tolerate

a wider range of temperatures. Applying these results to global temperature data, Brady et al. (2014)

produced maps indicating areas where the temperature is suitable for these vectors to persist. Whilst

temperature is clearly a crucial factor constraining the distribution of the two species, these results

alone are not sufficient to discriminate between areas where the species can and cannot persist. Other

studies went further using statistical models, predicting the distributions of both species (though

particularly Ae. albopictus) using a broader range of climatic variables including precipitation

(Benedict et al., 2007; Medley, 2010; Fischer et al., 2011; Caminade et al., 2012; Khormi and

Kumar 2014; Campbell et al., 2015).

Whilst these studies incorporated several generic climatic factors to predict the current and future

distribution of the species, we were able to integrate a bespoke species-specific temperature

suitability covariate and account for anthropogenic factors that are known to influence Ae. aegypti

and Ae. albopictus distributions (Reiter et al., 2003). Both species are container-inhabiting but differ

in their behaviour and biology so that they occupy different niches (Eisen and Moore, 2013). A few

local studies showed, however, that local spread of Ae. albopictus and declining Ae. aegypti

populations might be linked to inter-species competition (O’Meara et al., 1995; Daugherty et al.,

2000; Juliano et al., 2007) and/or non-reciprocal cross-species inseminations (Bargielowski et al.,

2013). Socio-economic factors affecting the distribution of the Aedes mosquitoes other than the use

of containers to store water, include the use of air-conditioning, housing quality, and the rate of

urbanisation (Ramos et al., 2008; Aström et al., 2012). In addition to exclusively focusing on

meteorological factors in determining the spatial extent of the Aedes mosquitoes, many models used

small sets of input occurrence data, which were biased towards particular countries with well-

developed surveillance systems, such as, Brazil and Taiwan (Benedict et al., 2007; Medley, 2010;

Fischer et al., 2011; Campbell et al., 2015).

In this context, we set out to model the global distribution of these two important vector species,

compiling the most comprehensive occurrence dataset to date from published literature and national

entomological surveys. To overcome previous modelling limitations, a probabilistic species

distribution model using Boosted Regression Trees (BRT) was produced for each vector. Our models

combine environmental and, for the first time, land-cover variables to predict the global distribution

of both species at high spatial resolution. Importantly, the models quantify prediction uncertainty and

aim at identifying key contributing factors and inter-species differences in their environmental niches.

Results
In total, data collection yielded 19,930 and 22,137 spatially unique occurrence records for Ae. aegypti

and Ae. albopictus respectively, which were used to train the distribution models. This includes up-to

date records from national entomological surveys from Brazil and Taiwan for both species (Carvalho

et al., 2014; Yang et al., 2014). For Ae. aegypti, >60% of all occurrence records are from Asia and
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Oceania, 35% are from the Americas and only 575 unique occurrences are available for Africa and

Europe (Table 1a). Similarly for Ae. albopictus, most of the occurrences are from Asia (75%), 23%

are from the Americas and only 542 records are available from Europe and Africa (Table 1b).

For each continent the top 10 countries in terms of occurrences recorded are shown for both

species (Table 1). The geographic distribution of the occurrence records is the widest ever recorded

with particularly high spatial and temporal resolution in Taiwan and Brazil for both species and in the

United States for Ae. albopictus. All occurrence data have been made openly available through an

online data repository to ensure consistency and reproducibility (Pigott and Kraemer, 2014;

Kraemer et al., 2015a).

Maps showing the predicted global distribution for Ae. aegypti and Ae. albopictus are presented

in Figures 1, 2, respectively. The distributions of the two species differ markedly in a number of

places. Ae. aegypti is predicted to occur primarily in the tropics and sub-tropics, with concentrations

in northern Brazil and southeast Asia including all of India, but with relatively few areas of suitability in

Europe (only Spain and Greece) and temperate North America. In Australia, however, Ae. aegypti

shows a wider geographic distribution than Ae. albopictus, which is confined to the east coast, largely

reflecting the known historic distribution of Ae. aegypti. By contrast, the distribution of Ae. albopictus

extends into southern Europe (Figure 3A), northern China, southern Brazil, northern United States

(3b), and Japan. Again, this reflects the current and historic distribution of Ae. albopictus and the

ability of the species to tolerate lower temperatures (Tsuda and Takagi, 2001; Lounibos et al., 2002;

Thomas et al., 2012; Brady et al., 2014).

Table 1. The geographic distribution of spatially unique occurrence records for the Americas, Europe/Africa, and Asia/Oceania

Country Occurrences Country Occurrences Country Occurrences

Ae. aegypti

Americas Brazil 5,044 Europe/
Africa

Senegal 112 Asia/
Oceania

Taiwan 9,490

USA 436 Cameroon 55 Indonesia 603

Mexico 411 Kenya 52 Thailand 495

Cuba 177 United Republic of
Tanzania

44 India 423

Argentina 170 Côte d’Ivoire 40 Australia 282

Trinidad and
Tobago

152 Nigeria 35 Viet Nam 223

Venezuela 130 Madagascar 28 Malaysia 112

Colombia 128 Gabon 27 Singapore 44

Puerto Rico 120 Mayotte 20 Philippines 36

Peru 89 Sierra Leone 20 Cambodia 29

Ae. albopictus

Americas Brazil 3,441 Europe/
Africa

Italy 203 Asia/
Oceania

Taiwan 15,339

USA 1,594 Madagascar 58 Malaysia 186

Mexico 50 Cameroon 42 Indonesia 161

Cayman Islands 15 France 37 India 150

Haiti 13 Gabon 27 Japan 97

Guatemala 12 Albania 22 Thailand 82

Venezuela 7 Mayotte 21 Singapore 44

Colombia 3 Greece 18 Lao People’s Democratic
Republic

26

Cuba 3 Israel 17 Philippines 22

Puerto Rico 3 Lebanon 15 Viet Nam 18

Top 10 countries in terms of occurrence records for each continent are shown for Ae. aegypti (a) and Ae. albopictus (b).

DOI: 10.7554/eLife.08347.003
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In Europe, the predicted potential distribution of Ae. albopictus contains most of the known

occurrence points, but suitability is also predicted in Portugal and the west of Spain, and in much of

south-eastern Europe and the Balkans, where the species has yet to be reported. Similarly, in China

Ae. albopictus has yet to be reported from much of the area predicted to be environmentally suitable.

By contrast, in the United States the species has been reported from almost all of the predicted

suitable areas, with the exception of a small band of predicted suitability on the western slope of the

Sierra Nevada. Due to the relatively sparse reporting from Africa it remains uncertain whether areas

predicted to be highly suitable are already infested or have yet to be colonized by the species.

Ae. albopictus for example has only been reported from some West African countries (Nigeria,

Cameroon, Gabon, the Central African Republic, Congo, Côte d’Ivoire) and Madagascar, and South

Africa (as well as some islands in the Indian Ocean). The distribution of Ae. aegypti in Africa seems

to be much wider, with reports of species occurrence in over 30 countries.

For both species, the most important predictor was temperature. Temperature suitability indices

had high relative influence statistics for both species; this variable was selected in approximately

half of regression tree decisions for Ae. aegypti (54.9%, CI = 53.7–56%) and Ae. albopictus (44.3%,

CI = 42.7–45.6%). The full definition of a relative influence statistic is given in the ‘Materials and

methods’ section under the heading Predictive performance and relative influence of covariates.

Figure 1. Global map of the predicted distribution of Ae. aegypti. The map depicts the probability of occurrence (from 0 blue to 1 red) at a spatial

resolution of 5 km × 5 km.

DOI: 10.7554/eLife.08347.004

The following figure supplements are available for figure 1:

Figure supplement 1. Effect plots of covariates used in this study showing the marginal effect of each covariate on probability of presence for Ae. aegypti

(1) and Ae. albopictus (2): enhanced vegetation index (EVI) annual mean (A); Enhanced vegetation index—range (B); annual monthly maximum

precipitation (C); annual monthly minimum precipitation (D); temperature suitability (E); urban areas (F); peri-urban areas (G).

DOI: 10.7554/eLife.08347.005

Figure supplement 2. Set of covariate layers used to predict the ecological niche of Ae. aegypti and Ae. albopictus described in detail in the ‘Materials

and methods’ section; (A) enhanced vegetation index (EVI) annual mean, (B) EVI annual range, (C) annual monthly maximum precipitation, (D) annual

monthly minimum precipitation, (E) temperature suitability for Ae. albopictus, (F) temperature suitability for Ae. aegypti, (G) rural, peri-urban and urban

classification layer.

DOI: 10.7554/eLife.08347.006

Figure supplement 3. Visualization of pixel level uncertainty calculated using the upper and lower bounds of the 95% confidence intervals associated with

the prediction maps for Ae. aegypti (A) and Ae. albopictus (B).

DOI: 10.7554/eLife.08347.007

Figure supplement 4. The distribution of the occurrence database for Ae. aegypti (A) and Ae. albopictus (B) plotted on the underlying prediction surface.

DOI: 10.7554/eLife.08347.008
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Precipitation and vegetation indices made up the remainder of predictors. Urban land cover made

very little contribution to either model (Table 2). Model evaluation statistics under cross-validation

were high (AUC: 0.87 and 0.9 respectively) for both model ensembles, indicating high predictive

performance of the model. Effect plots for each covariate are shown in Figure 1—figure supplement 2.

Maps of uncertainty associated with these predictions are presented in Figure 1—figure supplement 3.

Discussion
By combining the most comprehensive dataset of occurrence records with an advanced modelling

approach and a bespoke set of environmental and land-cover correlates, we have produced

contemporary high-resolution probability of occurrence maps for Ae. aegypti and Ae. albopictus, two

of the most important disease vectors globally. Dengue and chikungunya, pathogens transmitted by

these vectors and rapidly expanding in their distributions, are increasingly prominent in public health

agendas and pose significant health threats to humans (Staples et al., 2009; Gardner et al., 2012;

Bhatt et al., 2013; Weaver and Lecuit, 2015). In common with previous work to map the global

distributions of the dominant vectors of malaria (Sinka et al., 2010a, 2010b, 2011), the maps will

improve efforts to understand the spatial epidemiology of associated arboviruses, and to predict how

these could change in the future. Specifically, these maps may be used to prioritize surveillance for

these vector species and the diseases caused by the viruses they transmit in areas where disease and

entomological reporting remains poor. For example, in parts of Asia and Africa where there is

a mismatch between predicted environmental suitability and reported occurrences, these maps could

be used to determine whether the vector has yet to fill its niche or if it is present but has not been

reported due to limited entomological surveillance. They may also be used to identify areas where

the species could persist but has yet to be reported, in order to proactively prevent vector

establishment.

The relative contributions of each of the environmental covariates to the global models concur with

our theoretical and experimental understanding of each species’ biology. Both species’ distributions

are highly dependent on the limiting factor temperature places on survival of the adult mosquitoes

and on the gonotrophic cycle (Brady et al., 2013) (Table 2). The inclusion of a bespoke temperature

suitability index (Brady et al., 2014), both in defining the pseudo-absences and as a covariate,

allowed us to capture both geographic and temporal variations in the species-specific effects of

temperature in a single variable, leading to improved predictive skill of the models. As both

Figure 2. Global map of the predicted distribution of Ae. albopictus. The map depicts the probability of occurrence (from 0 blue to 1 red) at a spatial

resolution of 5 km × 5 km.

DOI: 10.7554/eLife.08347.009
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Ae. aegypti and Ae. albopictus lay their eggs in small water-filled containers (Morrison et al., 2004), it

is encouraging that precipitation also has a strong influence on the model’s predictions. The stronger

influence of minimum precipitation for Ae. albopictus than for Ae. aegypti (16.1% vs 9.1%, Table 2)

may reflect the former species’ preference for non-domestic juvenile habitats, which are solely reliant

on filling via precipitation. By contrast, Ae. aegypti primarily inhabits domestic water-holding

containers (Scott et al., 2000) that are maintained in low-precipitation environments by water storage

activities. The greater importance of enhanced vegetation index (EVI) for Ae. albopictus than for

Ae. aegypti (15.3% vs 12.1%, Table 2) also supports the hypothesis that Ae. albopictus tends to prefer

non-domestic juvenile sites (Morrison et al., 2004). This does not, however, rule out the possibility

that the two species can overlap. Additional finer scale studies need to be conducted to investigate if

competitive exclusion for hosts and/or habitat occurs between Ae. aegypti and Ae. albopictus. The

effect of urbanicity was surprisingly low for both species (2% and 1.1% for Ae. albopictus and

Figure 3. Predicted probability of occurrence of Ae. albopictus in Europe (A) and the United States (B), regions in

which Ae. albopictus is rapidly expanding its range. Points represent known occurrences (transient [triangles] or

established [circles]) until the end of 2013.

DOI: 10.7554/eLife.08347.010
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Ae. aegypti, respectively). As both species have been shown to inhabit a wide variety of urban and

peri-urban settings with various degrees of intensity (Powell and Tabachnick, 2013; Li et al., 2014), it

is likely that the simple urban/rural distinction of our urbanicity covariate did not sufficiently capture

this variation and instead continuous covariates such as EVI allow to better distinguish the respective

habitat types and were thus chosen more frequently by the model. Incorporating a larger set of

covariates allowed us to investigate not only the effect of temperature on survival but for additional

variance as shown in the relative influence plots (Figure 1—figure supplement 1). Future Aedes

species distribution models could be improved by including a comprehensive global covariate that

distinguishes human settlements using complex satellite imagery processing tools (Schneider, 2012).

Our maps are based on covariates where each 5 km × 5 km pixel represents yearly mean average

values. We therefore produce maps that represent the long-term average distribution of both species.

However, this does not allow us to directly infer seasonal patterns of distributions which might be of

importance on the periphery of the species distributions. With a more temporally resolved dataset it

may be possible to capture the effects of intra-annual seasonality on the species’ distributions. Adding

mechanistic determinants, such as survival, have previously been used to combine seasonal patterns

with global distribution maps (Johansson et al., 2014). To make best use of the comprehensive set of

data collected, we construct models and maps at a global scale, allowing the model to share

information across the whole spectrum of environmental regions. However, given the scale at which

this study was performed, there is always the possibility that variation in microclimate or local adaptive

strategies of both species may have a significant impact in some locations.

Previous studies have discussed the risk of pathogen importation and autochthonous transmission

of DENV and CHIKV in Europe and the Americas without comprehensively accounting for the

distribution of the vectors (Bogoch et al., 2014; Schaffner and Mathis, 2014). These freely available

vector distributions maps (http://goo.gl/Zl2P7J) can now be used as covariates to refine these studies

and to generate high-resolution maps of the risk of possible local DENV and CHIKV transmission in

currently non-endemic settings. Such maps would be useful for prioritizing surveillance in areas where

there is a risk of disease importation. This will be especially important in areas where sporadic cases of

related viruses have been reported, such as Europe, the United States, Argentina, and China

(Rezza et al., 2007; Otero and Solari, 2010; Wu et al., 2010; Johansson, 2015).

Both Ae. aegypti and Ae. albopictus have a history of global expansion associated with trade and

travel (Tatem et al., 2006; Brown et al., 2014; Gloria-Soria et al., 2014). Introductions of the species

over long distances and between continents has been associated with international trade routes via

shipping and overland spread driven by human movement and transport routes, both facilitated by

the endophilic behavior of the two species (Nawrocki and Hawley, 1987; Tatem et al., 2006;

Hofhuis et al., 2009). The global spread of the associated pathogens has undoubtedly been

a consequence of increasing global connectedness. As these processes continue and the world

becomes increasingly connected and urbanized, risk of importation and subsequent autochthonous

transmission of DENV and CHIKV will continue to increase (Allwinn et al., 2008; Tomasello and

Schlagenhauf, 2013; Khan et al., 2014; Messina et al., 2015). The true distribution of both species is

influenced by a variety of factors, not just the ones presented here. Nevertheless, this study represents

an important baseline for further refinements. For instance, our maps can be used to indicate areas

Table 2. Relative contribution of environmental covariates predicting the global distribution of Ae. aegypti and Ae. albopictus

Mean contribution

Ae. aegypti (%)

95% confidence interval

Ae. aegypti (%)

Mean contribution

Ae. albopictus (%)

95% confidence interval

Ae. albopictus (%)

Temperature suitability 54.9 53.7–56 44.3 42.7–45.6

Maximum precipitation 13.6 12.6–14.6 13.9 12.7–14.9

Enhanced vegetation index
(mean)

12.1 11.3–12.9 15.3 14.5–16.3

Minimum precipitation 9.1 8.5–10 16.1 15.2–16.9

Enhanced vegetation index
(range)

8.3 7.7–9 9.1 8.3–10.1

Urbanicity 2 1.3–2.4 1.1 0.7–1.7

DOI: 10.7554/eLife.08347.011
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where the species are likely to become established if introduced. Accurately predicting the future

distributions of these species will also require model-based estimates of the rate at which these

species colonize new areas. Such predictions can be informed by human and trade mobility patterns

between endemic and non-endemic regions as well as data on the past spread of the vectors.

Improving our ability to predict rates of vector importation will therefore be crucial to inferring future

risk (Seebens et al., 2013).

Previous studies have provided crucial information on genetic variation both within and between

populations of these two vector species (Brown et al., 2011). As the volume of georeferenced

information on the population genetics of Ae. aegypti and Ae. albopictus increases, the potential to

incorporate this information into mapping analyses to understand the current and future distribution

of disease risk also increases. Phylogeographic analyses offer a unique way to infer the recent patterns

of vector spread and to identify the major routes of importation (Allicock et al., 2012). This

information is crucial to inform models that predict the risk of vector introductions.

Phylogenetic information could also be used to inform future iterations of the species distribution

models used here by enabling the model to characterize and map environmental suitability for

different vector subspecies. This could be particularly useful in the case of Ae. albopictus where

genetic variation is known to underlie the ability to undergo diapause and therefore to overwinter in

colder locations (Takumi et al., 2009). Mapping the distributions of distinct genetic subgroups could

also improve our understanding of the complex interactions between mosquito vector populations

and virus strains and how this relates to spatial variation in transmission intensity (Tsetsarkin et al.,

2007; Vazeille et al., 2007; Tsetsarkin and Weaver, 2011; Zouache et al., 2014).

The maps presented comprise a contemporary estimate of the current and potential future

distribution of Ae. aegypti and Ae. albopictus. As more occurrence data become available, these

maps can be refined to incorporate recent importation and establishment events and corresponding

improvements in predictions. By disseminating both the occurrence data and the predictive maps on

an open-access basis we hope to facilitate both the future development of these maps and their

uptake by the global public health community.

Materials and methods
A BRT modelling approach was applied to derive probabilistic global environmental risk maps for

Ae. aegypti and Ae. albopictus. BRT models are machine-learning model ensembles commonly used

in species distribution modelling (SDM) and show strong predictive performance due to their ability to

handle complex non-linear relationships between probability of species occurrence and multiple

environmental correlates (Elith et al., 2006, 2008). Our model required the following sets of input

data in order to make accurate predictions of the distribution of these two species: (i) a temperature

suitability mask defining the fundamental limits of both species; (ii) a globally comprehensive dataset

of geo-positioned occurrence points for both species; (iii) appropriate land-cover and environmental

covariate datasets that help explain the current distribution of the species; and (iv) a set of species

absence records that further refine the species range and reduce sampling bias. Details regarding the

specific attributes of the model and data generation are outlined below and maps of each of the

covariates are shown in Figure 1—figure supplement 2.

Temperature suitability mask
While the niche of a species is determined by a host of environmental, ecological and socio-economic

factors of unknown influence and interaction strength, it is possible to exclude parts of the niche if the

direct effects of one factor on a step rate-limiting to population persistence are well known. One such

example for mosquito population persistence is whether temperature permits adult females to survive

long enough to complete their first gonotrophic cycle and thus oviposit. Both adult female longevity

and length of first gonotrophic cycle are temperature dependent. Combining these two relationships

with a dynamic population-level simulation, Brady et al. (2013, 2014) evaluated the thermal limits to

persistence of Ae. aegypti and Ae. albopictus populations on a global scale. The binary outputs of this

model are used as a mask to sample pseudo-absence points in locations known to be unsuitable–

thereby informing the statistical model using mechanistic model outputs. The temperature suitability

index developed by Brady et al. is also used in a continuous variable form (i.e., the relative number of

ovipositions of parous females permitted by temperature) as a covariate in the BRT model.
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Occurrence records
The database used for this study contains information on the known global occurrences of the adults,

pupae, larvae or eggs of Ae. aegypti and Ae. albopictus globally from 1960–2014. We included data

from a variety of sources, including (1) published literature and (2) primary and unpublished occurrence

data from national and international entomological surveys. To our knowledge this is the largest, most

comprehensive global dataset for both Ae. aegypti and Ae. albopictus. Confirmed Aedes occurrences

were entered in the database after a comprehensive literature search using methods described

elsewhere (Kraemer et al., 2015a; Kraemer et al., 2015b; http://dx.doi.org/10.5061/dryad.47v3c).

In short, this included extracting all available location (latitude and longitude) information from the

relevant articles, primarily using Google Maps (http://www.google.com/maps) so that it matched the

spatial resolution of our covariate datasets of approximately 5 km × 5 km. Primary and unpublished data

sources were obtained from Brazil, Europe, Indonesia, Taiwan, and the United States. After consolidating

all data into two large databases for each species, independently they underwent spatial and temporal

standardization. An occurrence record was defined as a single occurrence at a given unique location

within one calendar year. This was important to avoid over-representation in regions where multiple

surveys per year were performed, such as Taiwan or Brazil. To ensure the accuracy of the data we

overlaid the geolocated occurrence points with a raster that distinguished land from water. Any records

that were positioned outside the land area were subsequently removed. In total we assembled 19,930

and 22,137 occurrence records for Ae. aegypti and Ae. albopictus respectively. The distribution of

occurrence points are plotted in Figure 1—figure supplement 4.

Land-cover and environmental variables
The distribution of both species considered in this study are known to be influenced by environmental

factors such as temperature and demographic factors such as urbanisation (Lounibos, 2002; Brown

et al., 2014). Global gridded maps of such variables are becoming ever more available and have been

commonly applied in SDM and disease mapping (Hijmans et al., 2005; Hay et al., 2006; Gething

et al., 2011; Bhatt et al., 2013; Pigott et al., 2014a, 2014b). The rationale for the inclusion of each

variable we used is described below.

EVI
Survival of Ae. aegypti and Ae. albopictus is highly dependent on temperature and water availability

(Luz et al., 2008). EVI measures vegetation canopy greenness and can be used as a proxy for soil

surface-level moisture that are associated with the availability of mosquito larval development sites

(Estallo et al., 2008;Nihei et al., 2014). Eggs and adults require moisture to survive, with low dry season

moisture levels affecting adult mortality (Sota and Mogi, 1992; Russell et al., 2001). Vegetation canopy

cover reduces evaporation and wind speed in the sub-canopy, which protects mosquito development

sites (Linthicum, 1999; Fuller et al., 2009; Hahn et al., 2014). We used range and mean values of

MODIS EVI after processing through a gap-filling algorithm described elsewhere (Weiss et al., 2014).

Precipitation
The principal larval habitats of both species are man-made containers that are used for water storage or

accumulate rain (Morrison et al., 2004). Some local studies have shown that there is a relationship

between precipitation and vector abundance (Scott et al., 2000; Romero-Vivas and Falconar, 2005). To

account for the availability of water-filled containers a maximum and minimum annual precipitation layer

was extracted from the WorldClim database and projected for the year 2015 (http://www.worldclim.org).

Urbanisation
Ae. aegypti adults are highly domesticated mosquitoes feeding almost exclusively on humans

(Bargielowski et al., 2013), larvae develop preferentially in artificial containers in close association with

human habitation, often in urban settings (Lounibos, 2002; Honório et al., 2003; Brown et al., 2011,

2014; Powell and Tabachnick, 2013). Ae. albopictus are more commonly found in rural and peri-urban

settings, feeding readily on a variety of mammalian and avian species, although Ae. albopictus shows

similar larval development behavior in artificial containers (Reiter, 2001; Gratz, 2004; Juliano and

Philip Lounibos, 2005; Li et al., 2014). To account for differences in urban, peri-urban and rural

environments we built a categorical variable by supplementing the projected 2010 Global Rural Urban

Mapping Project (GRUMP) urban and rural categories with land-cover classes using night-time light

satellite imagery and population density, using the most up-to-date national censuses available to the
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smallest available administrative unit available (Balk et al., 2006). A gridded surface of 5 km × 5 km cells

was generated with each pixel representing either urban, peri-urban, or rural areas.

Modelling approach
BRT models consistently outperform other species distribution models such as maximum entropy

(Maxent), GARP, and BIOCLIM in their predictive performance (Elith et al., 2006; Leathwick et al.,

2006). BRT combines the strengths of regression trees (i.e., the omission of irrelevant variables and

the ability to model complex interactions) with machine learning techniques (i.e., the building of an

ensemble of models that approximate the true response surface [Elith and Leathwick, 2009]).

To prevent overfitting, the model used a penalized forward stepwise search and cross-validation

method to identify the optimal number of decision trees (Elith et al., 2008). Modelling was performed

using the gbm, dismo, raster and seegSDM R packages using the R v 3.1.1 environment (Ridgeway,

2013; Golding, 2014; Hijmans, 2014; R Core Team, 2014).

Removing sample selection bias
Pseudo-absence (also referred to as background) records provide a sample of the set of conditions

available to the species in the region rather than actual absences (Phillips et al., 2009). These records

are needed because true absences are generally unavailable in large composite datasets such as the

one used in this study. To account for reporting bias in presence data, a common problem with

presence-only SDM, which if not accounted for can lead to biases in the resulting predictions, we follow

Phillips et al. (2009) in sampling pseudo-absence points according to the same reporting bias likely to

be present in occurrence records (namely spatial variation in reporting of mosquito occurrence). Firstly,

we selected 10,000 occurrence records of Aedes species from the Global Biodiversity Information

Facility (http://www.gbif.org), omitting all records of Ae. aegypti and Ae. albopictus. This dataset is

intended to reflect biases in mosquito reporting in areas which are suitable for Aedes mosquitoes.

Secondly, to reflect areas where habitats are biologically not suitable for Aedes occurrence we sampled

an additional 10,000 pseudo-absence points at random locations, with sampling probability greatest in

areas that the biologically-based temperature suitability index predicted to be unsuitable. Thirdly,

sampling of occurrence points was also biased towards oversampled regions such as Brazil and Taiwan

in which there were a large number of reported occurrence records due to the inclusion of results of

large national entomological surveys (Table 1). Therefore, we weighted occurrence records from these

locations so that the density of occurrence records per country matched the density of all other records

globally by dividing the number of occurrence points by the size of the respective countries.

Modelling
An ensemble BRT was constructed using 120 sub-models to derive uncertainty distributions of the

prediction map. Each of the 120 sub-models was fitted to a separate bootstrap resampling of the

dataset and used to generate a probability map for each individual species on a 5 km × 5 km resolution.

The mean of these 120 sub-models was used as the final Aedes risk maps. Pixel based uncertainty was

estimated by calculating the 95% confidence interval from the 120 sub-models.

Predictive performance and relative influence of covariates
The variables used as land-cover and environmental correlates used in this study are quantified based

on their relative influence (0–100) on explaining the variance in the models calculated as the sum of the

number of times a particular variable is selected for splitting the decision tree, weighted by the squared

improvement to the overall model averaged over all trees (Friedman, 2001; Friedman and Meulman,

2003). Note that in a BRT, non-informative predictors are largely ignored (Elith et al., 2008). Predictive

performance of each sub-model was evaluated using the area under curve (AUC) statistic calculated as

the mean AUC for each of the ten cross-validation folds evaluated against the other 90% of the data

under the pairwise distance sampling procedure of Hijmans (2012). The overall predictive accuracy of

the model was measured as the mean and standard deviation of these AUCs across all 120 sub-models

(Merckx et al., 2010; Hijmans, 2012).
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Aström C, Rocklöv J, Hales S, Béguin A, Louis V, Sauerborn R. 2012. Potential distribution of dengue fever
under scenarios of climate change and economic development. Ecohealth 9:448–454. doi: 10.1007/
s10393-012-0808-0.

Balk DL, Deichmann U, Yetman G, Pozzi F, Hay SI, Nelson A. 2006. Determining global population distribution:
methods, applications and data. Advances in Parasitology 62:119–156. doi: 10.1016/S0065-308X(05)62004-0.

Bargielowski IE, Lounibos LP, Carrasquilla MC. 2013. Evolution of resistance to satyrization through reproductive
character displacement in populations of invasive dengue vectors. Proceedings of the National Academy of
Sciences of USA 110:2888–2892. doi: 10.1073/pnas.1219599110.

Benedict MQ, Levine RS, Hawley WA, Lounibos LP. 2007. Spread of the tiger: global risk of invasion by the
mosquito Aedes albopictus. Vector Borne and Zoonotic Diseases 7:76–85. doi: 10.1089/vbz.2006.0562.

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O,
Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global
distribution and burden of dengue. Nature 496:504–507. doi: 10.1038/nature12060.

Bogoch II, Creatore MI, Cetron MS, Brownstein JS, Pesik N, Miniota J, Tam T, Hu W, Nicolucci A, Ahmed S, Yoon
JW, Berry I, Hay SI, Anema A, Tatem AJ, MacFadden D, German M, Khan K. 2014. Assessment of the potential
for international dissemination of Ebola virus via commercial air travel during the 2014 west African outbreak.
Lancet 6736:1–7. doi: 10.1016/S0140-6736(14)61828-6.

Borgherini G, Poubeau P, Staikowsky F, Lory M, Le Moullec N, Becquart JP, Wengling C, Michault A, Paganin F.
2007. Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients.
Clinical Infectious Diseases 44:1401–1407. doi: 10.1086/517537.

Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI.
2012. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLOS
Neglected Tropical Diseases 6:e1760. doi: 10.1371/journal.pntd.0001760.

Brady OJ, Golding N, Pigott DM, Kraemer MU, Messina JP, Reiner RC Jr, Scott TW, Smith DL, Gething PW, Hay SI.
2014. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for
dengue virus transmission. Parasites & Vectors 7:338. doi: 10.1186/1756-3305-7-338.

Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Delatte H, Grech MG, Leisnham PT, Maciel-
de-Freitas R, Styer LM, Smith DL, Scott TW, Gething PW, Hay SI. 2013. Modelling adult Aedes aegypti and Aedes
albopictus survival at different temperatures in laboratory and field settings. Parasites & Vectors 6:351. doi: 10.
1186/1756-3305-6-351.

Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, Zhao H, Caccone A, Powell JR. 2014. Human
impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito.
Evolution 68:514–525. doi: 10.1111/evo.12281.

Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H, Lutomiah J, Fernandez-Salas I, Ponlawat A, Cornel
AJ, Black WC IV, Gorrochotegui-Escalante N, Urdaneta-Marquez L, Sylla M, Slotman M, Murray KO, Walker C,
Powell JR. 2011. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti,
a major vector of human diseases. Proceedings. Biological Sciences/The Royal Society 278:2446–2454. doi: 10.
1098/rspb.2010.2469.

Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, Morse AP. 2012. Suitability of European
climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. Journal of the Royal
Society, Interface/The Royal Society 9:2708–2717. doi: 10.1098/rsif.2012.0138.

Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. 2015. Climate change influences
on global vector distributions for dengue and chikungunya viruses. Philosophical Transactions of the Royal Society B
370. doi: 10.1098/rstb.2014.0135.

Carrington LB, Simmons CP. 2014. Human to mosquito transmission of dengue viruses. Frontiers in Immunology 5:
1–8. doi: 10.3389/fimmu.2014.00290.

Carvalho RG, Lourenço-de-Oliveira R, Braga IA. 2014. Updating the geographical distribution and frequency of
Aedes albopictus in Brazil with remarks regarding its range in the Americas. Memórias do Instituto Oswaldo Cruz
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